TPTP Problem File: ITP051^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : ITP051^1 : TPTP v8.2.0. Released v7.5.0.
% Domain   : Interactive Theorem Proving
% Problem  : Sledgehammer EdmondsKarp_Termination_Abstract problem prob_318__7590952_1
% Version  : Especial.
% English  :

% Refs     : [BH+15] Blanchette et al. (2015), Mining the Archive of Formal
%          : [Des21] Desharnais (2021), Email to Geoff Sutcliffe
% Source   : [Des21]
% Names    : EdmondsKarp_Termination_Abstract/prob_318__7590952_1 [Des21]

% Status   : ContradictoryAxioms
% Rating   : 0.40 v8.2.0, 0.23 v8.1.0, 0.36 v7.5.0
% Syntax   : Number of formulae    :  430 ( 161 unt;  81 typ;   0 def)
%            Number of atoms       :  836 ( 202 equ;   0 cnn)
%            Maximal formula atoms :    7 (   2 avg)
%            Number of connectives : 2328 (  57   ~;   4   |;  50   &;1885   @)
%                                         (   0 <=>; 332  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   16 (   6 avg)
%            Number of types       :   11 (  10 usr)
%            Number of type conns  :  285 ( 285   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   73 (  71 usr;   7 con; 0-4 aty)
%            Number of variables   :  694 (  62   ^; 594   !;  38   ?; 694   :)
% SPC      : TH0_CAX_EQU_NAR

% Comments : This file was generated by Sledgehammer 2021-02-23 15:31:25.892
%------------------------------------------------------------------------------
% Could-be-implicit typings (10)
thf(ty_n_t__Set__Oset_It__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    set_li664300135at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    set_se1612935105at_nat: $tType ).

thf(ty_n_t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    list_P559422087at_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    set_Pr1986765409at_nat: $tType ).

thf(ty_n_t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    product_prod_nat_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    set_set_nat: $tType ).

thf(ty_n_t__Set__Oset_It__Nat__Onat_J,type,
    set_nat: $tType ).

thf(ty_n_t__Nat__Onat,type,
    nat: $tType ).

thf(ty_n_tf__b,type,
    b: $tType ).

thf(ty_n_tf__a,type,
    a: $tType ).

% Explicit typings (71)
thf(sy_c_EdmondsKarp__Termination__Abstract__Mirabelle__pndqeoznpl_Oek__analysis_001tf__a,type,
    edmond1517640972ysis_a: ( product_prod_nat_nat > a ) > $o ).

thf(sy_c_EdmondsKarp__Termination__Abstract__Mirabelle__pndqeoznpl_Oek__analysis_001tf__b,type,
    edmond1517640973ysis_b: ( product_prod_nat_nat > b ) > $o ).

thf(sy_c_EdmondsKarp__Termination__Abstract__Mirabelle__pndqeoznpl_Oek__analysis__defs_OekMeasure_001tf__a,type,
    edmond1022345716sure_a: ( product_prod_nat_nat > a ) > nat > nat > nat ).

thf(sy_c_EdmondsKarp__Termination__Abstract__Mirabelle__pndqeoznpl_Oek__analysis__defs_OekMeasure_001tf__b,type,
    edmond1022345717sure_b: ( product_prod_nat_nat > b ) > nat > nat > nat ).

thf(sy_c_EdmondsKarp__Termination__Abstract__Mirabelle__pndqeoznpl_Oek__analysis__defs_OspEdges_001tf__a,type,
    edmond475474835dges_a: ( product_prod_nat_nat > a ) > nat > nat > set_Pr1986765409at_nat ).

thf(sy_c_EdmondsKarp__Termination__Abstract__Mirabelle__pndqeoznpl_Oek__analysis__defs_OspEdges_001tf__b,type,
    edmond475474836dges_b: ( product_prod_nat_nat > b ) > nat > nat > set_Pr1986765409at_nat ).

thf(sy_c_EdmondsKarp__Termination__Abstract__Mirabelle__pndqeoznpl_Oek__analysis__defs_OuE_001tf__a,type,
    edmond771116670s_uE_a: ( product_prod_nat_nat > a ) > set_Pr1986765409at_nat ).

thf(sy_c_EdmondsKarp__Termination__Abstract__Mirabelle__pndqeoznpl_Oek__analysis__defs_OuE_001tf__b,type,
    edmond771116671s_uE_b: ( product_prod_nat_nat > b ) > set_Pr1986765409at_nat ).

thf(sy_c_Finite__Set_Ocard_001t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    finite83082927at_nat: set_li664300135at_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Nat__Onat,type,
    finite_card_nat: set_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    finite447719721at_nat: set_Pr1986765409at_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Set__Oset_It__Nat__Onat_J,type,
    finite_card_set_nat: set_set_nat > nat ).

thf(sy_c_Finite__Set_Ocard_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    finite1701894793at_nat: set_se1612935105at_nat > nat ).

thf(sy_c_Finite__Set_Ofinite_001t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    finite1299096496at_nat: set_li664300135at_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Nat__Onat,type,
    finite_finite_nat: set_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    finite772653738at_nat: set_Pr1986765409at_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Nat__Onat_J,type,
    finite2012248349et_nat: set_set_nat > $o ).

thf(sy_c_Finite__Set_Ofinite_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    finite1457549322at_nat: set_se1612935105at_nat > $o ).

thf(sy_c_Graph_OFinite__Graph_001tf__a,type,
    finite_Graph_a: ( product_prod_nat_nat > a ) > $o ).

thf(sy_c_Graph_OFinite__Graph_001tf__b,type,
    finite_Graph_b: ( product_prod_nat_nat > b ) > $o ).

thf(sy_c_Graph_OGraph_OE_001tf__a,type,
    e_a: ( product_prod_nat_nat > a ) > set_Pr1986765409at_nat ).

thf(sy_c_Graph_OGraph_OE_001tf__b,type,
    e_b: ( product_prod_nat_nat > b ) > set_Pr1986765409at_nat ).

thf(sy_c_Graph_OGraph_OV_001tf__a,type,
    v_a: ( product_prod_nat_nat > a ) > set_nat ).

thf(sy_c_Graph_OGraph_OV_001tf__b,type,
    v_b: ( product_prod_nat_nat > b ) > set_nat ).

thf(sy_c_Graph_OGraph_Oadjacent__nodes_001tf__a,type,
    adjacent_nodes_a: ( product_prod_nat_nat > a ) > nat > set_nat ).

thf(sy_c_Graph_OGraph_Oadjacent__nodes_001tf__b,type,
    adjacent_nodes_b: ( product_prod_nat_nat > b ) > nat > set_nat ).

thf(sy_c_Graph_OGraph_Oconnected_001tf__a,type,
    connected_a: ( product_prod_nat_nat > a ) > nat > nat > $o ).

thf(sy_c_Graph_OGraph_Oconnected_001tf__b,type,
    connected_b: ( product_prod_nat_nat > b ) > nat > nat > $o ).

thf(sy_c_Graph_OGraph_Odist_001tf__a,type,
    dist_a: ( product_prod_nat_nat > a ) > nat > nat > nat > $o ).

thf(sy_c_Graph_OGraph_Odist_001tf__b,type,
    dist_b: ( product_prod_nat_nat > b ) > nat > nat > nat > $o ).

thf(sy_c_Graph_OGraph_Oincoming_H_001tf__a,type,
    incoming_a: ( product_prod_nat_nat > a ) > set_nat > set_Pr1986765409at_nat ).

thf(sy_c_Graph_OGraph_Oincoming_H_001tf__b,type,
    incoming_b: ( product_prod_nat_nat > b ) > set_nat > set_Pr1986765409at_nat ).

thf(sy_c_Graph_OGraph_OisPath_001tf__a,type,
    isPath_a: ( product_prod_nat_nat > a ) > nat > list_P559422087at_nat > nat > $o ).

thf(sy_c_Graph_OGraph_OisPath_001tf__b,type,
    isPath_b: ( product_prod_nat_nat > b ) > nat > list_P559422087at_nat > nat > $o ).

thf(sy_c_Graph_OGraph_OisShortestPath_001tf__a,type,
    isShortestPath_a: ( product_prod_nat_nat > a ) > nat > list_P559422087at_nat > nat > $o ).

thf(sy_c_Graph_OGraph_OisShortestPath_001tf__b,type,
    isShortestPath_b: ( product_prod_nat_nat > b ) > nat > list_P559422087at_nat > nat > $o ).

thf(sy_c_Graph_OGraph_OisSimplePath_001tf__a,type,
    isSimplePath_a: ( product_prod_nat_nat > a ) > nat > list_P559422087at_nat > nat > $o ).

thf(sy_c_Graph_OGraph_OisSimplePath_001tf__b,type,
    isSimplePath_b: ( product_prod_nat_nat > b ) > nat > list_P559422087at_nat > nat > $o ).

thf(sy_c_Graph_OGraph_Omin__dist_001tf__a,type,
    min_dist_a: ( product_prod_nat_nat > a ) > nat > nat > nat ).

thf(sy_c_Graph_OGraph_Omin__dist_001tf__b,type,
    min_dist_b: ( product_prod_nat_nat > b ) > nat > nat > nat ).

thf(sy_c_Graph_OGraph_Ooutgoing_H_001tf__a,type,
    outgoing_a: ( product_prod_nat_nat > a ) > set_nat > set_Pr1986765409at_nat ).

thf(sy_c_Graph_OGraph_Ooutgoing_H_001tf__b,type,
    outgoing_b: ( product_prod_nat_nat > b ) > set_nat > set_Pr1986765409at_nat ).

thf(sy_c_Graph_OGraph_OreachableNodes_001tf__a,type,
    reachableNodes_a: ( product_prod_nat_nat > a ) > nat > set_nat ).

thf(sy_c_Graph_OGraph_OreachableNodes_001tf__b,type,
    reachableNodes_b: ( product_prod_nat_nat > b ) > nat > set_nat ).

thf(sy_c_Groups_Ozero__class_Ozero_001t__Nat__Onat,type,
    zero_zero_nat: nat ).

thf(sy_c_List_Olist_Oset_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    set_Pr2131844118at_nat: list_P559422087at_nat > set_Pr1986765409at_nat ).

thf(sy_c_Nat_Osize__class_Osize_001t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    size_s1990949619at_nat: list_P559422087at_nat > nat ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Nat__Onat,type,
    ord_less_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    ord_le116442893at_nat: set_Pr1986765409at_nat > set_Pr1986765409at_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Nat__Onat,type,
    ord_less_eq_nat: nat > nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Nat__Onat_J,type,
    ord_less_eq_set_nat: set_nat > set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    ord_le841296385at_nat: set_Pr1986765409at_nat > set_Pr1986765409at_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Nat__Onat_J_J,type,
    ord_le1613022364et_nat: set_set_nat > set_set_nat > $o ).

thf(sy_c_Orderings_Oord__class_Oless__eq_001t__Set__Oset_It__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J_J,type,
    ord_le2096002913at_nat: set_se1612935105at_nat > set_se1612935105at_nat > $o ).

thf(sy_c_Set_OCollect_001t__Nat__Onat,type,
    collect_nat: ( nat > $o ) > set_nat ).

thf(sy_c_Set_OCollect_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    collec7649004at_nat: ( product_prod_nat_nat > $o ) > set_Pr1986765409at_nat ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Nat__Onat_J,type,
    collect_set_nat: ( set_nat > $o ) > set_set_nat ).

thf(sy_c_Set_OCollect_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    collec1606769740at_nat: ( set_Pr1986765409at_nat > $o ) > set_se1612935105at_nat ).

thf(sy_c_member_001t__List__Olist_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    member1608759472at_nat: list_P559422087at_nat > set_li664300135at_nat > $o ).

thf(sy_c_member_001t__Nat__Onat,type,
    member_nat: nat > set_nat > $o ).

thf(sy_c_member_001t__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J,type,
    member701585322at_nat: product_prod_nat_nat > set_Pr1986765409at_nat > $o ).

thf(sy_c_member_001t__Set__Oset_It__Nat__Onat_J,type,
    member_set_nat: set_nat > set_set_nat > $o ).

thf(sy_c_member_001t__Set__Oset_It__Product____Type__Oprod_It__Nat__Onat_Mt__Nat__Onat_J_J,type,
    member298845450at_nat: set_Pr1986765409at_nat > set_se1612935105at_nat > $o ).

thf(sy_v_c,type,
    c: product_prod_nat_nat > a ).

thf(sy_v_c_H,type,
    c2: product_prod_nat_nat > b ).

thf(sy_v_edges,type,
    edges: set_Pr1986765409at_nat ).

thf(sy_v_p,type,
    p: list_P559422087at_nat ).

thf(sy_v_p_H____,type,
    p2: list_P559422087at_nat ).

thf(sy_v_s,type,
    s: nat ).

thf(sy_v_t,type,
    t: nat ).

% Relevant facts (348)
thf(fact_0_ek__analysis__axioms,axiom,
    edmond1517640972ysis_a @ c ).

% ek_analysis_axioms
thf(fact_1_LENP,axiom,
    ( ( size_s1990949619at_nat @ p )
    = ( min_dist_a @ c @ s @ t ) ) ).

% LENP
thf(fact_2_LENP_H,axiom,
    ( ( size_s1990949619at_nat @ p2 )
    = ( min_dist_b @ c2 @ s @ t ) ) ).

% LENP'
thf(fact_3_ek__analysis__defs_OekMeasure_Ocong,axiom,
    edmond1022345717sure_b = edmond1022345717sure_b ).

% ek_analysis_defs.ekMeasure.cong
thf(fact_4_ek__analysis__defs_OekMeasure_Ocong,axiom,
    edmond1022345716sure_a = edmond1022345716sure_a ).

% ek_analysis_defs.ekMeasure.cong
thf(fact_5_g_H_Oek__analysis__axioms,axiom,
    edmond1517640973ysis_b @ c2 ).

% g'.ek_analysis_axioms
thf(fact_6_SHORTER,axiom,
    ord_less_nat @ ( min_dist_b @ c2 @ s @ t ) @ ( min_dist_a @ c @ s @ t ) ).

% SHORTER
thf(fact_7_ek__analysis__defs_OuE_Ocong,axiom,
    edmond771116671s_uE_b = edmond771116671s_uE_b ).

% ek_analysis_defs.uE.cong
thf(fact_8_ek__analysis__defs_OuE_Ocong,axiom,
    edmond771116670s_uE_a = edmond771116670s_uE_a ).

% ek_analysis_defs.uE.cong
thf(fact_9_ek__analysis__defs_OspEdges_Ocong,axiom,
    edmond475474835dges_a = edmond475474835dges_a ).

% ek_analysis_defs.spEdges.cong
thf(fact_10_ek__analysis__defs_OspEdges_Ocong,axiom,
    edmond475474836dges_b = edmond475474836dges_b ).

% ek_analysis_defs.spEdges.cong
thf(fact_11_g_H_OFinite__Graph__axioms,axiom,
    finite_Graph_b @ c2 ).

% g'.Finite_Graph_axioms
thf(fact_12_Finite__Graph__axioms,axiom,
    finite_Graph_a @ c ).

% Finite_Graph_axioms
thf(fact_13__092_060open_062length_Ap_A_060_Alength_Ap_H_092_060close_062,axiom,
    ord_less_nat @ ( size_s1990949619at_nat @ p ) @ ( size_s1990949619at_nat @ p2 ) ).

% \<open>length p < length p'\<close>
thf(fact_14_uE__eq,axiom,
    ( ( edmond771116671s_uE_b @ c2 )
    = ( edmond771116670s_uE_a @ c ) ) ).

% uE_eq
thf(fact_15_SP,axiom,
    isShortestPath_a @ c @ s @ p @ t ).

% SP
thf(fact_16_CONN2,axiom,
    connected_b @ c2 @ s @ t ).

% CONN2
thf(fact_17_SV,axiom,
    member_nat @ s @ ( v_a @ c ) ).

% SV
thf(fact_18_P_H,axiom,
    isPath_b @ c2 @ s @ p2 @ t ).

% P'
thf(fact_19_ek__analysis__def,axiom,
    edmond1517640972ysis_a = finite_Graph_a ).

% ek_analysis_def
thf(fact_20_ek__analysis__def,axiom,
    edmond1517640973ysis_b = finite_Graph_b ).

% ek_analysis_def
thf(fact_21_ek__analysis_Ointro,axiom,
    ! [C: product_prod_nat_nat > a] :
      ( ( finite_Graph_a @ C )
     => ( edmond1517640972ysis_a @ C ) ) ).

% ek_analysis.intro
thf(fact_22_ek__analysis_Ointro,axiom,
    ! [C: product_prod_nat_nat > b] :
      ( ( finite_Graph_b @ C )
     => ( edmond1517640973ysis_b @ C ) ) ).

% ek_analysis.intro
thf(fact_23_ek__analysis_Oaxioms,axiom,
    ! [C: product_prod_nat_nat > a] :
      ( ( edmond1517640972ysis_a @ C )
     => ( finite_Graph_a @ C ) ) ).

% ek_analysis.axioms
thf(fact_24_ek__analysis_Oaxioms,axiom,
    ! [C: product_prod_nat_nat > b] :
      ( ( edmond1517640973ysis_b @ C )
     => ( finite_Graph_b @ C ) ) ).

% ek_analysis.axioms
thf(fact_25__092_060open_062_092_060not_062_Ag_H_Oconnected_As_At_A_092_060Longrightarrow_062_Ag_H_OekMeasure_A_060_AekMeasure_092_060close_062,axiom,
    ( ~ ( connected_b @ c2 @ s @ t )
   => ( ord_less_nat @ ( edmond1022345717sure_b @ c2 @ s @ t ) @ ( edmond1022345716sure_a @ c @ s @ t ) ) ) ).

% \<open>\<not> g'.connected s t \<Longrightarrow> g'.ekMeasure < ekMeasure\<close>
thf(fact_26__092_060open_062g_H_Odist_As_A_Ig_H_Omin__dist_As_At_J_At_092_060close_062,axiom,
    dist_b @ c2 @ s @ ( min_dist_b @ c2 @ s @ t ) @ t ).

% \<open>g'.dist s (g'.min_dist s t) t\<close>
thf(fact_27__092_060open_062_092_060And_062thesis_O_A_I_092_060And_062p_H_O_A_092_060lbrakk_062g_H_OisPath_As_Ap_H_At_059_Alength_Ap_H_A_061_Ag_H_Omin__dist_As_At_092_060rbrakk_062_A_092_060Longrightarrow_062_Athesis_J_A_092_060Longrightarrow_062_Athesis_092_060close_062,axiom,
    ~ ! [P: list_P559422087at_nat] :
        ( ( isPath_b @ c2 @ s @ P @ t )
       => ( ( size_s1990949619at_nat @ P )
         != ( min_dist_b @ c2 @ s @ t ) ) ) ).

% \<open>\<And>thesis. (\<And>p'. \<lbrakk>g'.isPath s p' t; length p' = g'.min_dist s t\<rbrakk> \<Longrightarrow> thesis) \<Longrightarrow> thesis\<close>
thf(fact_28_CONN,axiom,
    connected_a @ c @ s @ t ).

% CONN
thf(fact_29_min__dist__less,axiom,
    ! [Src: nat,V: nat,D: nat,D2: nat] :
      ( ( connected_a @ c @ Src @ V )
     => ( ( ( min_dist_a @ c @ Src @ V )
          = D )
       => ( ( ord_less_nat @ D2 @ D )
         => ? [V2: nat] :
              ( ( connected_a @ c @ Src @ V2 )
              & ( ( min_dist_a @ c @ Src @ V2 )
                = D2 ) ) ) ) ) ).

% min_dist_less
thf(fact_30_g_H_Omin__dist__less,axiom,
    ! [Src: nat,V: nat,D: nat,D2: nat] :
      ( ( connected_b @ c2 @ Src @ V )
     => ( ( ( min_dist_b @ c2 @ Src @ V )
          = D )
       => ( ( ord_less_nat @ D2 @ D )
         => ? [V2: nat] :
              ( ( connected_b @ c2 @ Src @ V2 )
              & ( ( min_dist_b @ c2 @ Src @ V2 )
                = D2 ) ) ) ) ) ).

% g'.min_dist_less
thf(fact_31_length__induct,axiom,
    ! [P2: list_P559422087at_nat > $o,Xs: list_P559422087at_nat] :
      ( ! [Xs2: list_P559422087at_nat] :
          ( ! [Ys: list_P559422087at_nat] :
              ( ( ord_less_nat @ ( size_s1990949619at_nat @ Ys ) @ ( size_s1990949619at_nat @ Xs2 ) )
             => ( P2 @ Ys ) )
         => ( P2 @ Xs2 ) )
     => ( P2 @ Xs ) ) ).

% length_induct
thf(fact_32_finite__spEdges,axiom,
    finite772653738at_nat @ ( edmond475474835dges_a @ c @ s @ t ) ).

% finite_spEdges
thf(fact_33_g_H_Ofinite__spEdges,axiom,
    finite772653738at_nat @ ( edmond475474836dges_b @ c2 @ s @ t ) ).

% g'.finite_spEdges
thf(fact_34_min__dist__z,axiom,
    ! [V: nat] :
      ( ( min_dist_a @ c @ V @ V )
      = zero_zero_nat ) ).

% min_dist_z
thf(fact_35_g_H_Omin__dist__z,axiom,
    ! [V: nat] :
      ( ( min_dist_b @ c2 @ V @ V )
      = zero_zero_nat ) ).

% g'.min_dist_z
thf(fact_36_g_H_Oconnected__def,axiom,
    ! [U: nat,V: nat] :
      ( ( connected_b @ c2 @ U @ V )
      = ( ? [P3: list_P559422087at_nat] : ( isPath_b @ c2 @ U @ P3 @ V ) ) ) ).

% g'.connected_def
thf(fact_37_connected__inV__iff,axiom,
    ! [U: nat,V: nat] :
      ( ( connected_a @ c @ U @ V )
     => ( ( member_nat @ V @ ( v_a @ c ) )
        = ( member_nat @ U @ ( v_a @ c ) ) ) ) ).

% connected_inV_iff
thf(fact_38_g_H_Oconnected__by__dist,axiom,
    ! [V: nat,V3: nat] :
      ( ( connected_b @ c2 @ V @ V3 )
      = ( ? [D3: nat] : ( dist_b @ c2 @ V @ D3 @ V3 ) ) ) ).

% g'.connected_by_dist
thf(fact_39_obtain__shortest__path,axiom,
    ! [U: nat,V: nat] :
      ( ( connected_a @ c @ U @ V )
     => ~ ! [P4: list_P559422087at_nat] :
            ~ ( isShortestPath_a @ c @ U @ P4 @ V ) ) ).

% obtain_shortest_path
thf(fact_40_g_H_OisPath__distD,axiom,
    ! [U: nat,P5: list_P559422087at_nat,V: nat] :
      ( ( isPath_b @ c2 @ U @ P5 @ V )
     => ( dist_b @ c2 @ U @ ( size_s1990949619at_nat @ P5 ) @ V ) ) ).

% g'.isPath_distD
thf(fact_41_g_H_Odist__def,axiom,
    ! [V: nat,D: nat,V3: nat] :
      ( ( dist_b @ c2 @ V @ D @ V3 )
      = ( ? [P3: list_P559422087at_nat] :
            ( ( isPath_b @ c2 @ V @ P3 @ V3 )
            & ( ( size_s1990949619at_nat @ P3 )
              = D ) ) ) ) ).

% g'.dist_def
thf(fact_42_g_H_Omin__dist__is__dist,axiom,
    ! [V: nat,V3: nat] :
      ( ( connected_b @ c2 @ V @ V3 )
     => ( dist_b @ c2 @ V @ ( min_dist_b @ c2 @ V @ V3 ) @ V3 ) ) ).

% g'.min_dist_is_dist
thf(fact_43_g_H_Oconnected__refl,axiom,
    ! [V: nat] : ( connected_b @ c2 @ V @ V ) ).

% g'.connected_refl
thf(fact_44_connected__refl,axiom,
    ! [V: nat] : ( connected_a @ c @ V @ V ) ).

% connected_refl
thf(fact_45_g_H_Odist__z__iff,axiom,
    ! [V: nat,V3: nat] :
      ( ( dist_b @ c2 @ V @ zero_zero_nat @ V3 )
      = ( V3 = V ) ) ).

% g'.dist_z_iff
thf(fact_46_g_H_Odist__z,axiom,
    ! [V: nat] : ( dist_b @ c2 @ V @ zero_zero_nat @ V ) ).

% g'.dist_z
thf(fact_47_g_H_Oconnected__distI,axiom,
    ! [V: nat,D: nat,V3: nat] :
      ( ( dist_b @ c2 @ V @ D @ V3 )
     => ( connected_b @ c2 @ V @ V3 ) ) ).

% g'.connected_distI
thf(fact_48_g_H_Ofinite__uE,axiom,
    finite772653738at_nat @ ( edmond771116671s_uE_b @ c2 ) ).

% g'.finite_uE
thf(fact_49_finite__uE,axiom,
    finite772653738at_nat @ ( edmond771116670s_uE_a @ c ) ).

% finite_uE
thf(fact_50_g_H_Omin__dist__z__iff,axiom,
    ! [V: nat,V3: nat] :
      ( ( connected_b @ c2 @ V @ V3 )
     => ( ( ( min_dist_b @ c2 @ V @ V3 )
          = zero_zero_nat )
        = ( V3 = V ) ) ) ).

% g'.min_dist_z_iff
thf(fact_51_mem__Collect__eq,axiom,
    ! [A: set_Pr1986765409at_nat,P2: set_Pr1986765409at_nat > $o] :
      ( ( member298845450at_nat @ A @ ( collec1606769740at_nat @ P2 ) )
      = ( P2 @ A ) ) ).

% mem_Collect_eq
thf(fact_52_mem__Collect__eq,axiom,
    ! [A: set_nat,P2: set_nat > $o] :
      ( ( member_set_nat @ A @ ( collect_set_nat @ P2 ) )
      = ( P2 @ A ) ) ).

% mem_Collect_eq
thf(fact_53_mem__Collect__eq,axiom,
    ! [A: product_prod_nat_nat,P2: product_prod_nat_nat > $o] :
      ( ( member701585322at_nat @ A @ ( collec7649004at_nat @ P2 ) )
      = ( P2 @ A ) ) ).

% mem_Collect_eq
thf(fact_54_mem__Collect__eq,axiom,
    ! [A: nat,P2: nat > $o] :
      ( ( member_nat @ A @ ( collect_nat @ P2 ) )
      = ( P2 @ A ) ) ).

% mem_Collect_eq
thf(fact_55_Collect__mem__eq,axiom,
    ! [A2: set_se1612935105at_nat] :
      ( ( collec1606769740at_nat
        @ ^ [X: set_Pr1986765409at_nat] : ( member298845450at_nat @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_56_Collect__mem__eq,axiom,
    ! [A2: set_set_nat] :
      ( ( collect_set_nat
        @ ^ [X: set_nat] : ( member_set_nat @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_57_Collect__mem__eq,axiom,
    ! [A2: set_Pr1986765409at_nat] :
      ( ( collec7649004at_nat
        @ ^ [X: product_prod_nat_nat] : ( member701585322at_nat @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_58_Collect__mem__eq,axiom,
    ! [A2: set_nat] :
      ( ( collect_nat
        @ ^ [X: nat] : ( member_nat @ X @ A2 ) )
      = A2 ) ).

% Collect_mem_eq
thf(fact_59_Collect__cong,axiom,
    ! [P2: nat > $o,Q: nat > $o] :
      ( ! [X2: nat] :
          ( ( P2 @ X2 )
          = ( Q @ X2 ) )
     => ( ( collect_nat @ P2 )
        = ( collect_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_60_Collect__cong,axiom,
    ! [P2: product_prod_nat_nat > $o,Q: product_prod_nat_nat > $o] :
      ( ! [X2: product_prod_nat_nat] :
          ( ( P2 @ X2 )
          = ( Q @ X2 ) )
     => ( ( collec7649004at_nat @ P2 )
        = ( collec7649004at_nat @ Q ) ) ) ).

% Collect_cong
thf(fact_61_min__dist__z__iff,axiom,
    ! [V: nat,V3: nat] :
      ( ( connected_a @ c @ V @ V3 )
     => ( ( ( min_dist_a @ c @ V @ V3 )
          = zero_zero_nat )
        = ( V3 = V ) ) ) ).

% min_dist_z_iff
thf(fact_62_ek__analysis_Ofinite__uE,axiom,
    ! [C: product_prod_nat_nat > b] :
      ( ( edmond1517640973ysis_b @ C )
     => ( finite772653738at_nat @ ( edmond771116671s_uE_b @ C ) ) ) ).

% ek_analysis.finite_uE
thf(fact_63_ek__analysis_Ofinite__uE,axiom,
    ! [C: product_prod_nat_nat > a] :
      ( ( edmond1517640972ysis_a @ C )
     => ( finite772653738at_nat @ ( edmond771116670s_uE_a @ C ) ) ) ).

% ek_analysis.finite_uE
thf(fact_64_ek__analysis_Ofinite__spEdges,axiom,
    ! [C: product_prod_nat_nat > a,S: nat,T: nat] :
      ( ( edmond1517640972ysis_a @ C )
     => ( finite772653738at_nat @ ( edmond475474835dges_a @ C @ S @ T ) ) ) ).

% ek_analysis.finite_spEdges
thf(fact_65_ek__analysis_Ofinite__spEdges,axiom,
    ! [C: product_prod_nat_nat > b,S: nat,T: nat] :
      ( ( edmond1517640973ysis_b @ C )
     => ( finite772653738at_nat @ ( edmond475474836dges_b @ C @ S @ T ) ) ) ).

% ek_analysis.finite_spEdges
thf(fact_66_neq__if__length__neq,axiom,
    ! [Xs: list_P559422087at_nat,Ys2: list_P559422087at_nat] :
      ( ( ( size_s1990949619at_nat @ Xs )
       != ( size_s1990949619at_nat @ Ys2 ) )
     => ( Xs != Ys2 ) ) ).

% neq_if_length_neq
thf(fact_67_Ex__list__of__length,axiom,
    ! [N: nat] :
    ? [Xs2: list_P559422087at_nat] :
      ( ( size_s1990949619at_nat @ Xs2 )
      = N ) ).

% Ex_list_of_length
thf(fact_68_bot__nat__0_Onot__eq__extremum,axiom,
    ! [A: nat] :
      ( ( A != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ A ) ) ).

% bot_nat_0.not_eq_extremum
thf(fact_69_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_nat_zero_code
thf(fact_70_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
      = ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% neq0_conv
thf(fact_71_not__gr__zero,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr_zero
thf(fact_72_Graph_OisShortestPath__min__dist__def,axiom,
    ( isShortestPath_a
    = ( ^ [C2: product_prod_nat_nat > a,U2: nat,P3: list_P559422087at_nat,V4: nat] :
          ( ( isPath_a @ C2 @ U2 @ P3 @ V4 )
          & ( ( size_s1990949619at_nat @ P3 )
            = ( min_dist_a @ C2 @ U2 @ V4 ) ) ) ) ) ).

% Graph.isShortestPath_min_dist_def
thf(fact_73_Graph_OisShortestPath__min__dist__def,axiom,
    ( isShortestPath_b
    = ( ^ [C2: product_prod_nat_nat > b,U2: nat,P3: list_P559422087at_nat,V4: nat] :
          ( ( isPath_b @ C2 @ U2 @ P3 @ V4 )
          & ( ( size_s1990949619at_nat @ P3 )
            = ( min_dist_b @ C2 @ U2 @ V4 ) ) ) ) ) ).

% Graph.isShortestPath_min_dist_def
thf(fact_74_g_H_OisShortestPath__min__dist__def,axiom,
    ! [U: nat,P5: list_P559422087at_nat,V: nat] :
      ( ( isShortestPath_b @ c2 @ U @ P5 @ V )
      = ( ( isPath_b @ c2 @ U @ P5 @ V )
        & ( ( size_s1990949619at_nat @ P5 )
          = ( min_dist_b @ c2 @ U @ V ) ) ) ) ).

% g'.isShortestPath_min_dist_def
thf(fact_75_g_H_Omin__distI2,axiom,
    ! [V: nat,V3: nat,Q: nat > $o] :
      ( ( connected_b @ c2 @ V @ V3 )
     => ( ! [D4: nat] :
            ( ( dist_b @ c2 @ V @ D4 @ V3 )
           => ( ! [D5: nat] :
                  ( ( dist_b @ c2 @ V @ D5 @ V3 )
                 => ( ord_less_eq_nat @ D4 @ D5 ) )
             => ( Q @ D4 ) ) )
       => ( Q @ ( min_dist_b @ c2 @ V @ V3 ) ) ) ) ).

% g'.min_distI2
thf(fact_76_isShortestPath__length__less__V,axiom,
    ! [S: nat,P5: list_P559422087at_nat,T: nat] :
      ( ( member_nat @ S @ ( v_a @ c ) )
     => ( ( isShortestPath_a @ c @ S @ P5 @ T )
       => ( ord_less_nat @ ( size_s1990949619at_nat @ P5 ) @ ( finite_card_nat @ ( v_a @ c ) ) ) ) ) ).

% isShortestPath_length_less_V
thf(fact_77_min__dist__less__V,axiom,
    ! [S: nat,T: nat] :
      ( ( member_nat @ S @ ( v_a @ c ) )
     => ( ( connected_a @ c @ S @ T )
       => ( ord_less_nat @ ( min_dist_a @ c @ S @ T ) @ ( finite_card_nat @ ( v_a @ c ) ) ) ) ) ).

% min_dist_less_V
thf(fact_78_connected__def,axiom,
    ! [U: nat,V: nat] :
      ( ( connected_a @ c @ U @ V )
      = ( ? [P3: list_P559422087at_nat] : ( isPath_a @ c @ U @ P3 @ V ) ) ) ).

% connected_def
thf(fact_79_shortestPath__is__path,axiom,
    ! [U: nat,P5: list_P559422087at_nat,V: nat] :
      ( ( isShortestPath_a @ c @ U @ P5 @ V )
     => ( isPath_a @ c @ U @ P5 @ V ) ) ).

% shortestPath_is_path
thf(fact_80_g_H_OshortestPath__is__path,axiom,
    ! [U: nat,P5: list_P559422087at_nat,V: nat] :
      ( ( isShortestPath_b @ c2 @ U @ P5 @ V )
     => ( isPath_b @ c2 @ U @ P5 @ V ) ) ).

% g'.shortestPath_is_path
thf(fact_81_g_H_Oobtain__shortest__path,axiom,
    ! [U: nat,V: nat] :
      ( ( connected_b @ c2 @ U @ V )
     => ~ ! [P4: list_P559422087at_nat] :
            ~ ( isShortestPath_b @ c2 @ U @ P4 @ V ) ) ).

% g'.obtain_shortest_path
thf(fact_82_g_H_Omin__dist__le,axiom,
    ! [Src: nat,V: nat,D2: nat] :
      ( ( connected_b @ c2 @ Src @ V )
     => ( ( ord_less_eq_nat @ D2 @ ( min_dist_b @ c2 @ Src @ V ) )
       => ? [V2: nat] :
            ( ( connected_b @ c2 @ Src @ V2 )
            & ( ( min_dist_b @ c2 @ Src @ V2 )
              = D2 ) ) ) ) ).

% g'.min_dist_le
thf(fact_83_g_H_Omin__distI__eq,axiom,
    ! [V: nat,D: nat,V3: nat] :
      ( ( dist_b @ c2 @ V @ D @ V3 )
     => ( ! [D6: nat] :
            ( ( dist_b @ c2 @ V @ D6 @ V3 )
           => ( ord_less_eq_nat @ D @ D6 ) )
       => ( ( min_dist_b @ c2 @ V @ V3 )
          = D ) ) ) ).

% g'.min_distI_eq
thf(fact_84_g_H_Omin__dist__minD,axiom,
    ! [V: nat,D: nat,V3: nat] :
      ( ( dist_b @ c2 @ V @ D @ V3 )
     => ( ord_less_eq_nat @ ( min_dist_b @ c2 @ V @ V3 ) @ D ) ) ).

% g'.min_dist_minD
thf(fact_85_min__dist__le,axiom,
    ! [Src: nat,V: nat,D2: nat] :
      ( ( connected_a @ c @ Src @ V )
     => ( ( ord_less_eq_nat @ D2 @ ( min_dist_a @ c @ Src @ V ) )
       => ? [V2: nat] :
            ( ( connected_a @ c @ Src @ V2 )
            & ( ( min_dist_a @ c @ Src @ V2 )
              = D2 ) ) ) ) ).

% min_dist_le
thf(fact_86_isShortestPath__def,axiom,
    ! [U: nat,P5: list_P559422087at_nat,V: nat] :
      ( ( isShortestPath_a @ c @ U @ P5 @ V )
      = ( ( isPath_a @ c @ U @ P5 @ V )
        & ! [P6: list_P559422087at_nat] :
            ( ( isPath_a @ c @ U @ P6 @ V )
           => ( ord_less_eq_nat @ ( size_s1990949619at_nat @ P5 ) @ ( size_s1990949619at_nat @ P6 ) ) ) ) ) ).

% isShortestPath_def
thf(fact_87_isShortestPath__min__dist__def,axiom,
    ! [U: nat,P5: list_P559422087at_nat,V: nat] :
      ( ( isShortestPath_a @ c @ U @ P5 @ V )
      = ( ( isPath_a @ c @ U @ P5 @ V )
        & ( ( size_s1990949619at_nat @ P5 )
          = ( min_dist_a @ c @ U @ V ) ) ) ) ).

% isShortestPath_min_dist_def
thf(fact_88_g_H_OisShortestPath__def,axiom,
    ! [U: nat,P5: list_P559422087at_nat,V: nat] :
      ( ( isShortestPath_b @ c2 @ U @ P5 @ V )
      = ( ( isPath_b @ c2 @ U @ P5 @ V )
        & ! [P6: list_P559422087at_nat] :
            ( ( isPath_b @ c2 @ U @ P6 @ V )
           => ( ord_less_eq_nat @ ( size_s1990949619at_nat @ P5 ) @ ( size_s1990949619at_nat @ P6 ) ) ) ) ) ).

% g'.isShortestPath_def
thf(fact_89_le__zero__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_zero_eq
thf(fact_90_le0,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% le0
thf(fact_91_bot__nat__0_Oextremum,axiom,
    ! [A: nat] : ( ord_less_eq_nat @ zero_zero_nat @ A ) ).

% bot_nat_0.extremum
thf(fact_92_zero__le,axiom,
    ! [X3: nat] : ( ord_less_eq_nat @ zero_zero_nat @ X3 ) ).

% zero_le
thf(fact_93_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ N @ N ) ).

% le_refl
thf(fact_94_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq_nat @ I @ J )
     => ( ( ord_less_eq_nat @ J @ K )
       => ( ord_less_eq_nat @ I @ K ) ) ) ).

% le_trans
thf(fact_95_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_96_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( ord_less_eq_nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_97_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
      | ( ord_less_eq_nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_98_Nat_Oex__has__greatest__nat,axiom,
    ! [P2: nat > $o,K: nat,B: nat] :
      ( ( P2 @ K )
     => ( ! [Y: nat] :
            ( ( P2 @ Y )
           => ( ord_less_eq_nat @ Y @ B ) )
       => ? [X2: nat] :
            ( ( P2 @ X2 )
            & ! [Y2: nat] :
                ( ( P2 @ Y2 )
               => ( ord_less_eq_nat @ Y2 @ X2 ) ) ) ) ) ).

% Nat.ex_has_greatest_nat
thf(fact_99_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq_nat @ zero_zero_nat @ N ) ).

% less_eq_nat.simps(1)
thf(fact_100_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq_nat @ N @ zero_zero_nat )
      = ( N = zero_zero_nat ) ) ).

% le_0_eq
thf(fact_101_bot__nat__0_Oextremum__unique,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
      = ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_unique
thf(fact_102_bot__nat__0_Oextremum__uniqueI,axiom,
    ! [A: nat] :
      ( ( ord_less_eq_nat @ A @ zero_zero_nat )
     => ( A = zero_zero_nat ) ) ).

% bot_nat_0.extremum_uniqueI
thf(fact_103_nat__less__le,axiom,
    ( ord_less_nat
    = ( ^ [M2: nat,N2: nat] :
          ( ( ord_less_eq_nat @ M2 @ N2 )
          & ( M2 != N2 ) ) ) ) ).

% nat_less_le
thf(fact_104_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_105_le__eq__less__or__eq,axiom,
    ( ord_less_eq_nat
    = ( ^ [M2: nat,N2: nat] :
          ( ( ord_less_nat @ M2 @ N2 )
          | ( M2 = N2 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_106_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less_nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq_nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_107_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq_nat @ M @ N )
     => ( ( M != N )
       => ( ord_less_nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_108_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I2: nat,J2: nat] :
          ( ( ord_less_nat @ I2 @ J2 )
         => ( ord_less_nat @ ( F @ I2 ) @ ( F @ J2 ) ) )
     => ( ( ord_less_eq_nat @ I @ J )
       => ( ord_less_eq_nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_109_ex__least__nat__le,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ( P2 @ N )
     => ( ~ ( P2 @ zero_zero_nat )
       => ? [K2: nat] :
            ( ( ord_less_eq_nat @ K2 @ N )
            & ! [I3: nat] :
                ( ( ord_less_nat @ I3 @ K2 )
               => ~ ( P2 @ I3 ) )
            & ( P2 @ K2 ) ) ) ) ).

% ex_least_nat_le
thf(fact_110_Graph_Omin__dist__le,axiom,
    ! [C: product_prod_nat_nat > b,Src: nat,V: nat,D2: nat] :
      ( ( connected_b @ C @ Src @ V )
     => ( ( ord_less_eq_nat @ D2 @ ( min_dist_b @ C @ Src @ V ) )
       => ? [V2: nat] :
            ( ( connected_b @ C @ Src @ V2 )
            & ( ( min_dist_b @ C @ Src @ V2 )
              = D2 ) ) ) ) ).

% Graph.min_dist_le
thf(fact_111_Graph_Omin__dist__le,axiom,
    ! [C: product_prod_nat_nat > a,Src: nat,V: nat,D2: nat] :
      ( ( connected_a @ C @ Src @ V )
     => ( ( ord_less_eq_nat @ D2 @ ( min_dist_a @ C @ Src @ V ) )
       => ? [V2: nat] :
            ( ( connected_a @ C @ Src @ V2 )
            & ( ( min_dist_a @ C @ Src @ V2 )
              = D2 ) ) ) ) ).

% Graph.min_dist_le
thf(fact_112_Graph_Omin__dist__minD,axiom,
    ! [C: product_prod_nat_nat > a,V: nat,D: nat,V3: nat] :
      ( ( dist_a @ C @ V @ D @ V3 )
     => ( ord_less_eq_nat @ ( min_dist_a @ C @ V @ V3 ) @ D ) ) ).

% Graph.min_dist_minD
thf(fact_113_Graph_Omin__dist__minD,axiom,
    ! [C: product_prod_nat_nat > b,V: nat,D: nat,V3: nat] :
      ( ( dist_b @ C @ V @ D @ V3 )
     => ( ord_less_eq_nat @ ( min_dist_b @ C @ V @ V3 ) @ D ) ) ).

% Graph.min_dist_minD
thf(fact_114_Graph_Omin__distI__eq,axiom,
    ! [C: product_prod_nat_nat > a,V: nat,D: nat,V3: nat] :
      ( ( dist_a @ C @ V @ D @ V3 )
     => ( ! [D6: nat] :
            ( ( dist_a @ C @ V @ D6 @ V3 )
           => ( ord_less_eq_nat @ D @ D6 ) )
       => ( ( min_dist_a @ C @ V @ V3 )
          = D ) ) ) ).

% Graph.min_distI_eq
thf(fact_115_Graph_Omin__distI__eq,axiom,
    ! [C: product_prod_nat_nat > b,V: nat,D: nat,V3: nat] :
      ( ( dist_b @ C @ V @ D @ V3 )
     => ( ! [D6: nat] :
            ( ( dist_b @ C @ V @ D6 @ V3 )
           => ( ord_less_eq_nat @ D @ D6 ) )
       => ( ( min_dist_b @ C @ V @ V3 )
          = D ) ) ) ).

% Graph.min_distI_eq
thf(fact_116_Graph_Omin__distI2,axiom,
    ! [C: product_prod_nat_nat > b,V: nat,V3: nat,Q: nat > $o] :
      ( ( connected_b @ C @ V @ V3 )
     => ( ! [D4: nat] :
            ( ( dist_b @ C @ V @ D4 @ V3 )
           => ( ! [D5: nat] :
                  ( ( dist_b @ C @ V @ D5 @ V3 )
                 => ( ord_less_eq_nat @ D4 @ D5 ) )
             => ( Q @ D4 ) ) )
       => ( Q @ ( min_dist_b @ C @ V @ V3 ) ) ) ) ).

% Graph.min_distI2
thf(fact_117_Graph_Omin__distI2,axiom,
    ! [C: product_prod_nat_nat > a,V: nat,V3: nat,Q: nat > $o] :
      ( ( connected_a @ C @ V @ V3 )
     => ( ! [D4: nat] :
            ( ( dist_a @ C @ V @ D4 @ V3 )
           => ( ! [D5: nat] :
                  ( ( dist_a @ C @ V @ D5 @ V3 )
                 => ( ord_less_eq_nat @ D4 @ D5 ) )
             => ( Q @ D4 ) ) )
       => ( Q @ ( min_dist_a @ C @ V @ V3 ) ) ) ) ).

% Graph.min_distI2
thf(fact_118_Graph_OisShortestPath__def,axiom,
    ( isShortestPath_a
    = ( ^ [C2: product_prod_nat_nat > a,U2: nat,P3: list_P559422087at_nat,V4: nat] :
          ( ( isPath_a @ C2 @ U2 @ P3 @ V4 )
          & ! [P6: list_P559422087at_nat] :
              ( ( isPath_a @ C2 @ U2 @ P6 @ V4 )
             => ( ord_less_eq_nat @ ( size_s1990949619at_nat @ P3 ) @ ( size_s1990949619at_nat @ P6 ) ) ) ) ) ) ).

% Graph.isShortestPath_def
thf(fact_119_Graph_OisShortestPath__def,axiom,
    ( isShortestPath_b
    = ( ^ [C2: product_prod_nat_nat > b,U2: nat,P3: list_P559422087at_nat,V4: nat] :
          ( ( isPath_b @ C2 @ U2 @ P3 @ V4 )
          & ! [P6: list_P559422087at_nat] :
              ( ( isPath_b @ C2 @ U2 @ P6 @ V4 )
             => ( ord_less_eq_nat @ ( size_s1990949619at_nat @ P3 ) @ ( size_s1990949619at_nat @ P6 ) ) ) ) ) ) ).

% Graph.isShortestPath_def
thf(fact_120_zero__reorient,axiom,
    ! [X3: nat] :
      ( ( zero_zero_nat = X3 )
      = ( X3 = zero_zero_nat ) ) ).

% zero_reorient
thf(fact_121_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less_nat @ M @ N )
        | ( ord_less_nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_122_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_not_refl
thf(fact_123_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_124_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less_nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_125_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_126_nat__less__induct,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_nat @ M3 @ N3 )
             => ( P2 @ M3 ) )
         => ( P2 @ N3 ) )
     => ( P2 @ N ) ) ).

% nat_less_induct
thf(fact_127_infinite__descent,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ~ ( P2 @ N3 )
         => ? [M3: nat] :
              ( ( ord_less_nat @ M3 @ N3 )
              & ~ ( P2 @ M3 ) ) )
     => ( P2 @ N ) ) ).

% infinite_descent
thf(fact_128_linorder__neqE__nat,axiom,
    ! [X3: nat,Y3: nat] :
      ( ( X3 != Y3 )
     => ( ~ ( ord_less_nat @ X3 @ Y3 )
       => ( ord_less_nat @ Y3 @ X3 ) ) ) ).

% linorder_neqE_nat
thf(fact_129_size__neq__size__imp__neq,axiom,
    ! [X3: list_P559422087at_nat,Y3: list_P559422087at_nat] :
      ( ( ( size_s1990949619at_nat @ X3 )
       != ( size_s1990949619at_nat @ Y3 ) )
     => ( X3 != Y3 ) ) ).

% size_neq_size_imp_neq
thf(fact_130_Graph_OisPath_Ocong,axiom,
    isPath_b = isPath_b ).

% Graph.isPath.cong
thf(fact_131_Graph_OisPath_Ocong,axiom,
    isPath_a = isPath_a ).

% Graph.isPath.cong
thf(fact_132_Graph_OV_Ocong,axiom,
    v_a = v_a ).

% Graph.V.cong
thf(fact_133_Graph_OV_Ocong,axiom,
    v_b = v_b ).

% Graph.V.cong
thf(fact_134_Graph_Omin__dist_Ocong,axiom,
    min_dist_a = min_dist_a ).

% Graph.min_dist.cong
thf(fact_135_Graph_Omin__dist_Ocong,axiom,
    min_dist_b = min_dist_b ).

% Graph.min_dist.cong
thf(fact_136_Graph_Oconnected_Ocong,axiom,
    connected_b = connected_b ).

% Graph.connected.cong
thf(fact_137_Graph_Oconnected_Ocong,axiom,
    connected_a = connected_a ).

% Graph.connected.cong
thf(fact_138_Graph_Oconnected__refl,axiom,
    ! [C: product_prod_nat_nat > b,V: nat] : ( connected_b @ C @ V @ V ) ).

% Graph.connected_refl
thf(fact_139_Graph_Oconnected__refl,axiom,
    ! [C: product_prod_nat_nat > a,V: nat] : ( connected_a @ C @ V @ V ) ).

% Graph.connected_refl
thf(fact_140_Graph_Odist_Ocong,axiom,
    dist_b = dist_b ).

% Graph.dist.cong
thf(fact_141_Graph_Odist_Ocong,axiom,
    dist_a = dist_a ).

% Graph.dist.cong
thf(fact_142_Graph_OisShortestPath_Ocong,axiom,
    isShortestPath_a = isShortestPath_a ).

% Graph.isShortestPath.cong
thf(fact_143_Graph_OisShortestPath_Ocong,axiom,
    isShortestPath_b = isShortestPath_b ).

% Graph.isShortestPath.cong
thf(fact_144_Finite__Graph_Omin__dist__less__V,axiom,
    ! [C: product_prod_nat_nat > b,S: nat,T: nat] :
      ( ( finite_Graph_b @ C )
     => ( ( member_nat @ S @ ( v_b @ C ) )
       => ( ( connected_b @ C @ S @ T )
         => ( ord_less_nat @ ( min_dist_b @ C @ S @ T ) @ ( finite_card_nat @ ( v_b @ C ) ) ) ) ) ) ).

% Finite_Graph.min_dist_less_V
thf(fact_145_Finite__Graph_Omin__dist__less__V,axiom,
    ! [C: product_prod_nat_nat > a,S: nat,T: nat] :
      ( ( finite_Graph_a @ C )
     => ( ( member_nat @ S @ ( v_a @ C ) )
       => ( ( connected_a @ C @ S @ T )
         => ( ord_less_nat @ ( min_dist_a @ C @ S @ T ) @ ( finite_card_nat @ ( v_a @ C ) ) ) ) ) ) ).

% Finite_Graph.min_dist_less_V
thf(fact_146_Finite__Graph_OisShortestPath__length__less__V,axiom,
    ! [C: product_prod_nat_nat > a,S: nat,P5: list_P559422087at_nat,T: nat] :
      ( ( finite_Graph_a @ C )
     => ( ( member_nat @ S @ ( v_a @ C ) )
       => ( ( isShortestPath_a @ C @ S @ P5 @ T )
         => ( ord_less_nat @ ( size_s1990949619at_nat @ P5 ) @ ( finite_card_nat @ ( v_a @ C ) ) ) ) ) ) ).

% Finite_Graph.isShortestPath_length_less_V
thf(fact_147_Finite__Graph_OisShortestPath__length__less__V,axiom,
    ! [C: product_prod_nat_nat > b,S: nat,P5: list_P559422087at_nat,T: nat] :
      ( ( finite_Graph_b @ C )
     => ( ( member_nat @ S @ ( v_b @ C ) )
       => ( ( isShortestPath_b @ C @ S @ P5 @ T )
         => ( ord_less_nat @ ( size_s1990949619at_nat @ P5 ) @ ( finite_card_nat @ ( v_b @ C ) ) ) ) ) ) ).

% Finite_Graph.isShortestPath_length_less_V
thf(fact_148_gr__zeroI,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr_zeroI
thf(fact_149_not__less__zero,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less_zero
thf(fact_150_gr__implies__not__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not_zero
thf(fact_151_zero__less__iff__neq__zero,axiom,
    ! [N: nat] :
      ( ( ord_less_nat @ zero_zero_nat @ N )
      = ( N != zero_zero_nat ) ) ).

% zero_less_iff_neq_zero
thf(fact_152_gr0I,axiom,
    ! [N: nat] :
      ( ( N != zero_zero_nat )
     => ( ord_less_nat @ zero_zero_nat @ N ) ) ).

% gr0I
thf(fact_153_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less_nat @ zero_zero_nat @ N ) )
      = ( N = zero_zero_nat ) ) ).

% not_gr0
thf(fact_154_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% not_less0
thf(fact_155_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less_nat @ N @ zero_zero_nat ) ).

% less_zeroE
thf(fact_156_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_nat @ M @ N )
     => ( N != zero_zero_nat ) ) ).

% gr_implies_not0
thf(fact_157_infinite__descent0,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ( P2 @ zero_zero_nat )
     => ( ! [N3: nat] :
            ( ( ord_less_nat @ zero_zero_nat @ N3 )
           => ( ~ ( P2 @ N3 )
             => ? [M3: nat] :
                  ( ( ord_less_nat @ M3 @ N3 )
                  & ~ ( P2 @ M3 ) ) ) )
       => ( P2 @ N ) ) ) ).

% infinite_descent0
thf(fact_158_bot__nat__0_Oextremum__strict,axiom,
    ! [A: nat] :
      ~ ( ord_less_nat @ A @ zero_zero_nat ) ).

% bot_nat_0.extremum_strict
thf(fact_159_Graph_Omin__dist__z,axiom,
    ! [C: product_prod_nat_nat > a,V: nat] :
      ( ( min_dist_a @ C @ V @ V )
      = zero_zero_nat ) ).

% Graph.min_dist_z
thf(fact_160_Graph_Omin__dist__z,axiom,
    ! [C: product_prod_nat_nat > b,V: nat] :
      ( ( min_dist_b @ C @ V @ V )
      = zero_zero_nat ) ).

% Graph.min_dist_z
thf(fact_161_Graph_Odist__z,axiom,
    ! [C: product_prod_nat_nat > b,V: nat] : ( dist_b @ C @ V @ zero_zero_nat @ V ) ).

% Graph.dist_z
thf(fact_162_Graph_Odist__z,axiom,
    ! [C: product_prod_nat_nat > a,V: nat] : ( dist_a @ C @ V @ zero_zero_nat @ V ) ).

% Graph.dist_z
thf(fact_163_Graph_Odist__z__iff,axiom,
    ! [C: product_prod_nat_nat > b,V: nat,V3: nat] :
      ( ( dist_b @ C @ V @ zero_zero_nat @ V3 )
      = ( V3 = V ) ) ).

% Graph.dist_z_iff
thf(fact_164_Graph_Odist__z__iff,axiom,
    ! [C: product_prod_nat_nat > a,V: nat,V3: nat] :
      ( ( dist_a @ C @ V @ zero_zero_nat @ V3 )
      = ( V3 = V ) ) ).

% Graph.dist_z_iff
thf(fact_165_Graph_Oconnected__def,axiom,
    ( connected_b
    = ( ^ [C2: product_prod_nat_nat > b,U2: nat,V4: nat] :
        ? [P3: list_P559422087at_nat] : ( isPath_b @ C2 @ U2 @ P3 @ V4 ) ) ) ).

% Graph.connected_def
thf(fact_166_Graph_Oconnected__def,axiom,
    ( connected_a
    = ( ^ [C2: product_prod_nat_nat > a,U2: nat,V4: nat] :
        ? [P3: list_P559422087at_nat] : ( isPath_a @ C2 @ U2 @ P3 @ V4 ) ) ) ).

% Graph.connected_def
thf(fact_167_Graph_Oconnected__inV__iff,axiom,
    ! [C: product_prod_nat_nat > b,U: nat,V: nat] :
      ( ( connected_b @ C @ U @ V )
     => ( ( member_nat @ V @ ( v_b @ C ) )
        = ( member_nat @ U @ ( v_b @ C ) ) ) ) ).

% Graph.connected_inV_iff
thf(fact_168_Graph_Oconnected__inV__iff,axiom,
    ! [C: product_prod_nat_nat > a,U: nat,V: nat] :
      ( ( connected_a @ C @ U @ V )
     => ( ( member_nat @ V @ ( v_a @ C ) )
        = ( member_nat @ U @ ( v_a @ C ) ) ) ) ).

% Graph.connected_inV_iff
thf(fact_169_Graph_OshortestPath__is__path,axiom,
    ! [C: product_prod_nat_nat > a,U: nat,P5: list_P559422087at_nat,V: nat] :
      ( ( isShortestPath_a @ C @ U @ P5 @ V )
     => ( isPath_a @ C @ U @ P5 @ V ) ) ).

% Graph.shortestPath_is_path
thf(fact_170_Graph_OshortestPath__is__path,axiom,
    ! [C: product_prod_nat_nat > b,U: nat,P5: list_P559422087at_nat,V: nat] :
      ( ( isShortestPath_b @ C @ U @ P5 @ V )
     => ( isPath_b @ C @ U @ P5 @ V ) ) ).

% Graph.shortestPath_is_path
thf(fact_171_Graph_Oconnected__distI,axiom,
    ! [C: product_prod_nat_nat > b,V: nat,D: nat,V3: nat] :
      ( ( dist_b @ C @ V @ D @ V3 )
     => ( connected_b @ C @ V @ V3 ) ) ).

% Graph.connected_distI
thf(fact_172_Graph_Oconnected__distI,axiom,
    ! [C: product_prod_nat_nat > a,V: nat,D: nat,V3: nat] :
      ( ( dist_a @ C @ V @ D @ V3 )
     => ( connected_a @ C @ V @ V3 ) ) ).

% Graph.connected_distI
thf(fact_173_Graph_Oconnected__by__dist,axiom,
    ( connected_b
    = ( ^ [C2: product_prod_nat_nat > b,V4: nat,V5: nat] :
        ? [D3: nat] : ( dist_b @ C2 @ V4 @ D3 @ V5 ) ) ) ).

% Graph.connected_by_dist
thf(fact_174_Graph_Oconnected__by__dist,axiom,
    ( connected_a
    = ( ^ [C2: product_prod_nat_nat > a,V4: nat,V5: nat] :
        ? [D3: nat] : ( dist_a @ C2 @ V4 @ D3 @ V5 ) ) ) ).

% Graph.connected_by_dist
thf(fact_175_Graph_Oobtain__shortest__path,axiom,
    ! [C: product_prod_nat_nat > a,U: nat,V: nat] :
      ( ( connected_a @ C @ U @ V )
     => ~ ! [P4: list_P559422087at_nat] :
            ~ ( isShortestPath_a @ C @ U @ P4 @ V ) ) ).

% Graph.obtain_shortest_path
thf(fact_176_Graph_Oobtain__shortest__path,axiom,
    ! [C: product_prod_nat_nat > b,U: nat,V: nat] :
      ( ( connected_b @ C @ U @ V )
     => ~ ! [P4: list_P559422087at_nat] :
            ~ ( isShortestPath_b @ C @ U @ P4 @ V ) ) ).

% Graph.obtain_shortest_path
thf(fact_177_Graph_Omin__dist__z__iff,axiom,
    ! [C: product_prod_nat_nat > b,V: nat,V3: nat] :
      ( ( connected_b @ C @ V @ V3 )
     => ( ( ( min_dist_b @ C @ V @ V3 )
          = zero_zero_nat )
        = ( V3 = V ) ) ) ).

% Graph.min_dist_z_iff
thf(fact_178_Graph_Omin__dist__z__iff,axiom,
    ! [C: product_prod_nat_nat > a,V: nat,V3: nat] :
      ( ( connected_a @ C @ V @ V3 )
     => ( ( ( min_dist_a @ C @ V @ V3 )
          = zero_zero_nat )
        = ( V3 = V ) ) ) ).

% Graph.min_dist_z_iff
thf(fact_179_Graph_Omin__dist__less,axiom,
    ! [C: product_prod_nat_nat > b,Src: nat,V: nat,D: nat,D2: nat] :
      ( ( connected_b @ C @ Src @ V )
     => ( ( ( min_dist_b @ C @ Src @ V )
          = D )
       => ( ( ord_less_nat @ D2 @ D )
         => ? [V2: nat] :
              ( ( connected_b @ C @ Src @ V2 )
              & ( ( min_dist_b @ C @ Src @ V2 )
                = D2 ) ) ) ) ) ).

% Graph.min_dist_less
thf(fact_180_Graph_Omin__dist__less,axiom,
    ! [C: product_prod_nat_nat > a,Src: nat,V: nat,D: nat,D2: nat] :
      ( ( connected_a @ C @ Src @ V )
     => ( ( ( min_dist_a @ C @ Src @ V )
          = D )
       => ( ( ord_less_nat @ D2 @ D )
         => ? [V2: nat] :
              ( ( connected_a @ C @ Src @ V2 )
              & ( ( min_dist_a @ C @ Src @ V2 )
                = D2 ) ) ) ) ) ).

% Graph.min_dist_less
thf(fact_181_Graph_Omin__dist__is__dist,axiom,
    ! [C: product_prod_nat_nat > b,V: nat,V3: nat] :
      ( ( connected_b @ C @ V @ V3 )
     => ( dist_b @ C @ V @ ( min_dist_b @ C @ V @ V3 ) @ V3 ) ) ).

% Graph.min_dist_is_dist
thf(fact_182_Graph_Omin__dist__is__dist,axiom,
    ! [C: product_prod_nat_nat > a,V: nat,V3: nat] :
      ( ( connected_a @ C @ V @ V3 )
     => ( dist_a @ C @ V @ ( min_dist_a @ C @ V @ V3 ) @ V3 ) ) ).

% Graph.min_dist_is_dist
thf(fact_183_Graph_OisPath__distD,axiom,
    ! [C: product_prod_nat_nat > b,U: nat,P5: list_P559422087at_nat,V: nat] :
      ( ( isPath_b @ C @ U @ P5 @ V )
     => ( dist_b @ C @ U @ ( size_s1990949619at_nat @ P5 ) @ V ) ) ).

% Graph.isPath_distD
thf(fact_184_Graph_OisPath__distD,axiom,
    ! [C: product_prod_nat_nat > a,U: nat,P5: list_P559422087at_nat,V: nat] :
      ( ( isPath_a @ C @ U @ P5 @ V )
     => ( dist_a @ C @ U @ ( size_s1990949619at_nat @ P5 ) @ V ) ) ).

% Graph.isPath_distD
thf(fact_185_Graph_Odist__def,axiom,
    ( dist_b
    = ( ^ [C2: product_prod_nat_nat > b,V4: nat,D3: nat,V5: nat] :
        ? [P3: list_P559422087at_nat] :
          ( ( isPath_b @ C2 @ V4 @ P3 @ V5 )
          & ( ( size_s1990949619at_nat @ P3 )
            = D3 ) ) ) ) ).

% Graph.dist_def
thf(fact_186_Graph_Odist__def,axiom,
    ( dist_a
    = ( ^ [C2: product_prod_nat_nat > a,V4: nat,D3: nat,V5: nat] :
        ? [P3: list_P559422087at_nat] :
          ( ( isPath_a @ C2 @ V4 @ P3 @ V5 )
          & ( ( size_s1990949619at_nat @ P3 )
            = D3 ) ) ) ) ).

% Graph.dist_def
thf(fact_187_card_Oinfinite,axiom,
    ! [A2: set_li664300135at_nat] :
      ( ~ ( finite1299096496at_nat @ A2 )
     => ( ( finite83082927at_nat @ A2 )
        = zero_zero_nat ) ) ).

% card.infinite
thf(fact_188_card_Oinfinite,axiom,
    ! [A2: set_se1612935105at_nat] :
      ( ~ ( finite1457549322at_nat @ A2 )
     => ( ( finite1701894793at_nat @ A2 )
        = zero_zero_nat ) ) ).

% card.infinite
thf(fact_189_card_Oinfinite,axiom,
    ! [A2: set_set_nat] :
      ( ~ ( finite2012248349et_nat @ A2 )
     => ( ( finite_card_set_nat @ A2 )
        = zero_zero_nat ) ) ).

% card.infinite
thf(fact_190_card_Oinfinite,axiom,
    ! [A2: set_Pr1986765409at_nat] :
      ( ~ ( finite772653738at_nat @ A2 )
     => ( ( finite447719721at_nat @ A2 )
        = zero_zero_nat ) ) ).

% card.infinite
thf(fact_191_card_Oinfinite,axiom,
    ! [A2: set_nat] :
      ( ~ ( finite_finite_nat @ A2 )
     => ( ( finite_card_nat @ A2 )
        = zero_zero_nat ) ) ).

% card.infinite
thf(fact_192_card__spEdges__le,axiom,
    ord_less_eq_nat @ ( finite447719721at_nat @ ( edmond475474835dges_a @ c @ s @ t ) ) @ ( finite447719721at_nat @ ( edmond771116670s_uE_a @ c ) ) ).

% card_spEdges_le
thf(fact_193_g_H_Ocard__spEdges__le,axiom,
    ord_less_eq_nat @ ( finite447719721at_nat @ ( edmond475474836dges_b @ c2 @ s @ t ) ) @ ( finite447719721at_nat @ ( edmond771116671s_uE_b @ c2 ) ) ).

% g'.card_spEdges_le
thf(fact_194_simplePath__length__less__V,axiom,
    ! [U: nat,P5: list_P559422087at_nat,V: nat] :
      ( ( member_nat @ U @ ( v_a @ c ) )
     => ( ( isSimplePath_a @ c @ U @ P5 @ V )
       => ( ord_less_nat @ ( size_s1990949619at_nat @ P5 ) @ ( finite_card_nat @ ( v_a @ c ) ) ) ) ) ).

% simplePath_length_less_V
thf(fact_195_card__ge__0__finite,axiom,
    ! [A2: set_li664300135at_nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite83082927at_nat @ A2 ) )
     => ( finite1299096496at_nat @ A2 ) ) ).

% card_ge_0_finite
thf(fact_196_card__ge__0__finite,axiom,
    ! [A2: set_se1612935105at_nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite1701894793at_nat @ A2 ) )
     => ( finite1457549322at_nat @ A2 ) ) ).

% card_ge_0_finite
thf(fact_197_card__ge__0__finite,axiom,
    ! [A2: set_set_nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite_card_set_nat @ A2 ) )
     => ( finite2012248349et_nat @ A2 ) ) ).

% card_ge_0_finite
thf(fact_198_card__ge__0__finite,axiom,
    ! [A2: set_Pr1986765409at_nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite447719721at_nat @ A2 ) )
     => ( finite772653738at_nat @ A2 ) ) ).

% card_ge_0_finite
thf(fact_199_card__ge__0__finite,axiom,
    ! [A2: set_nat] :
      ( ( ord_less_nat @ zero_zero_nat @ ( finite_card_nat @ A2 ) )
     => ( finite_finite_nat @ A2 ) ) ).

% card_ge_0_finite
thf(fact_200_min__distI2,axiom,
    ! [V: nat,V3: nat,Q: nat > $o] :
      ( ( connected_a @ c @ V @ V3 )
     => ( ! [D4: nat] :
            ( ( dist_a @ c @ V @ D4 @ V3 )
           => ( ! [D5: nat] :
                  ( ( dist_a @ c @ V @ D5 @ V3 )
                 => ( ord_less_eq_nat @ D4 @ D5 ) )
             => ( Q @ D4 ) ) )
       => ( Q @ ( min_dist_a @ c @ V @ V3 ) ) ) ) ).

% min_distI2
thf(fact_201_g_H_OisShortestPath__alt,axiom,
    ! [U: nat,P5: list_P559422087at_nat,V: nat] :
      ( ( isShortestPath_b @ c2 @ U @ P5 @ V )
      = ( ( isSimplePath_b @ c2 @ U @ P5 @ V )
        & ( ( size_s1990949619at_nat @ P5 )
          = ( min_dist_b @ c2 @ U @ V ) ) ) ) ).

% g'.isShortestPath_alt
thf(fact_202_g_H_Oconnected__inV__iff,axiom,
    ! [U: nat,V: nat] :
      ( ( connected_b @ c2 @ U @ V )
     => ( ( member_nat @ V @ ( v_b @ c2 ) )
        = ( member_nat @ U @ ( v_b @ c2 ) ) ) ) ).

% g'.connected_inV_iff
thf(fact_203_g_H_OisSPath__pathLE,axiom,
    ! [S: nat,P5: list_P559422087at_nat,T: nat] :
      ( ( isPath_b @ c2 @ S @ P5 @ T )
     => ? [P: list_P559422087at_nat] : ( isSimplePath_b @ c2 @ S @ P @ T ) ) ).

% g'.isSPath_pathLE
thf(fact_204_isSPath__pathLE,axiom,
    ! [S: nat,P5: list_P559422087at_nat,T: nat] :
      ( ( isPath_a @ c @ S @ P5 @ T )
     => ? [P: list_P559422087at_nat] : ( isSimplePath_a @ c @ S @ P @ T ) ) ).

% isSPath_pathLE
thf(fact_205_connected__by__dist,axiom,
    ! [V: nat,V3: nat] :
      ( ( connected_a @ c @ V @ V3 )
      = ( ? [D3: nat] : ( dist_a @ c @ V @ D3 @ V3 ) ) ) ).

% connected_by_dist
thf(fact_206_shortestPath__is__simple,axiom,
    ! [S: nat,P5: list_P559422087at_nat,T: nat] :
      ( ( isShortestPath_a @ c @ S @ P5 @ T )
     => ( isSimplePath_a @ c @ S @ P5 @ T ) ) ).

% shortestPath_is_simple
thf(fact_207_g_H_OshortestPath__is__simple,axiom,
    ! [S: nat,P5: list_P559422087at_nat,T: nat] :
      ( ( isShortestPath_b @ c2 @ S @ P5 @ T )
     => ( isSimplePath_b @ c2 @ S @ P5 @ T ) ) ).

% g'.shortestPath_is_simple
thf(fact_208_min__dist__minD,axiom,
    ! [V: nat,D: nat,V3: nat] :
      ( ( dist_a @ c @ V @ D @ V3 )
     => ( ord_less_eq_nat @ ( min_dist_a @ c @ V @ V3 ) @ D ) ) ).

% min_dist_minD
thf(fact_209_min__distI__eq,axiom,
    ! [V: nat,D: nat,V3: nat] :
      ( ( dist_a @ c @ V @ D @ V3 )
     => ( ! [D6: nat] :
            ( ( dist_a @ c @ V @ D6 @ V3 )
           => ( ord_less_eq_nat @ D @ D6 ) )
       => ( ( min_dist_a @ c @ V @ V3 )
          = D ) ) ) ).

% min_distI_eq
thf(fact_210_isPath__distD,axiom,
    ! [U: nat,P5: list_P559422087at_nat,V: nat] :
      ( ( isPath_a @ c @ U @ P5 @ V )
     => ( dist_a @ c @ U @ ( size_s1990949619at_nat @ P5 ) @ V ) ) ).

% isPath_distD
thf(fact_211_dist__def,axiom,
    ! [V: nat,D: nat,V3: nat] :
      ( ( dist_a @ c @ V @ D @ V3 )
      = ( ? [P3: list_P559422087at_nat] :
            ( ( isPath_a @ c @ V @ P3 @ V3 )
            & ( ( size_s1990949619at_nat @ P3 )
              = D ) ) ) ) ).

% dist_def
thf(fact_212_min__dist__is__dist,axiom,
    ! [V: nat,V3: nat] :
      ( ( connected_a @ c @ V @ V3 )
     => ( dist_a @ c @ V @ ( min_dist_a @ c @ V @ V3 ) @ V3 ) ) ).

% min_dist_is_dist
thf(fact_213_g_H_OsimplePath__length__less__V,axiom,
    ! [U: nat,P5: list_P559422087at_nat,V: nat] :
      ( ( member_nat @ U @ ( v_b @ c2 ) )
     => ( ( isSimplePath_b @ c2 @ U @ P5 @ V )
       => ( ord_less_nat @ ( size_s1990949619at_nat @ P5 ) @ ( finite_card_nat @ ( v_b @ c2 ) ) ) ) ) ).

% g'.simplePath_length_less_V
thf(fact_214_g_H_Omin__dist__less__V,axiom,
    ! [S: nat,T: nat] :
      ( ( member_nat @ S @ ( v_b @ c2 ) )
     => ( ( connected_b @ c2 @ S @ T )
       => ( ord_less_nat @ ( min_dist_b @ c2 @ S @ T ) @ ( finite_card_nat @ ( v_b @ c2 ) ) ) ) ) ).

% g'.min_dist_less_V
thf(fact_215_g_H_OisShortestPath__length__less__V,axiom,
    ! [S: nat,P5: list_P559422087at_nat,T: nat] :
      ( ( member_nat @ S @ ( v_b @ c2 ) )
     => ( ( isShortestPath_b @ c2 @ S @ P5 @ T )
       => ( ord_less_nat @ ( size_s1990949619at_nat @ P5 ) @ ( finite_card_nat @ ( v_b @ c2 ) ) ) ) ) ).

% g'.isShortestPath_length_less_V
thf(fact_216_isShortestPath__alt,axiom,
    ! [U: nat,P5: list_P559422087at_nat,V: nat] :
      ( ( isShortestPath_a @ c @ U @ P5 @ V )
      = ( ( isSimplePath_a @ c @ U @ P5 @ V )
        & ( ( size_s1990949619at_nat @ P5 )
          = ( min_dist_a @ c @ U @ V ) ) ) ) ).

% isShortestPath_alt
thf(fact_217_g_H_Ofinite__V,axiom,
    finite_finite_nat @ ( v_b @ c2 ) ).

% g'.finite_V
thf(fact_218_finite__V,axiom,
    finite_finite_nat @ ( v_a @ c ) ).

% finite_V
thf(fact_219_dist__z__iff,axiom,
    ! [V: nat,V3: nat] :
      ( ( dist_a @ c @ V @ zero_zero_nat @ V3 )
      = ( V3 = V ) ) ).

% dist_z_iff
thf(fact_220_dist__z,axiom,
    ! [V: nat] : ( dist_a @ c @ V @ zero_zero_nat @ V ) ).

% dist_z
thf(fact_221_connected__distI,axiom,
    ! [V: nat,D: nat,V3: nat] :
      ( ( dist_a @ c @ V @ D @ V3 )
     => ( connected_a @ c @ V @ V3 ) ) ).

% connected_distI
thf(fact_222_Veq,axiom,
    ( ( v_b @ c2 )
    = ( v_a @ c ) ) ).

% Veq
thf(fact_223_g_H_Oadjacent__nodes__ss__V,axiom,
    ! [U: nat] : ( ord_less_eq_set_nat @ ( adjacent_nodes_b @ c2 @ U ) @ ( v_b @ c2 ) ) ).

% g'.adjacent_nodes_ss_V
thf(fact_224_adjacent__nodes__ss__V,axiom,
    ! [U: nat] : ( ord_less_eq_set_nat @ ( adjacent_nodes_a @ c @ U ) @ ( v_a @ c ) ) ).

% adjacent_nodes_ss_V
thf(fact_225_Graph_OisSimplePath_Ocong,axiom,
    isSimplePath_a = isSimplePath_a ).

% Graph.isSimplePath.cong
thf(fact_226_Graph_OisSimplePath_Ocong,axiom,
    isSimplePath_b = isSimplePath_b ).

% Graph.isSimplePath.cong
thf(fact_227_finite__subset,axiom,
    ! [A2: set_se1612935105at_nat,B2: set_se1612935105at_nat] :
      ( ( ord_le2096002913at_nat @ A2 @ B2 )
     => ( ( finite1457549322at_nat @ B2 )
       => ( finite1457549322at_nat @ A2 ) ) ) ).

% finite_subset
thf(fact_228_finite__subset,axiom,
    ! [A2: set_set_nat,B2: set_set_nat] :
      ( ( ord_le1613022364et_nat @ A2 @ B2 )
     => ( ( finite2012248349et_nat @ B2 )
       => ( finite2012248349et_nat @ A2 ) ) ) ).

% finite_subset
thf(fact_229_finite__subset,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( finite_finite_nat @ B2 )
       => ( finite_finite_nat @ A2 ) ) ) ).

% finite_subset
thf(fact_230_finite__subset,axiom,
    ! [A2: set_Pr1986765409at_nat,B2: set_Pr1986765409at_nat] :
      ( ( ord_le841296385at_nat @ A2 @ B2 )
     => ( ( finite772653738at_nat @ B2 )
       => ( finite772653738at_nat @ A2 ) ) ) ).

% finite_subset
thf(fact_231_infinite__super,axiom,
    ! [S2: set_nat,T2: set_nat] :
      ( ( ord_less_eq_set_nat @ S2 @ T2 )
     => ( ~ ( finite_finite_nat @ S2 )
       => ~ ( finite_finite_nat @ T2 ) ) ) ).

% infinite_super
thf(fact_232_infinite__super,axiom,
    ! [S2: set_Pr1986765409at_nat,T2: set_Pr1986765409at_nat] :
      ( ( ord_le841296385at_nat @ S2 @ T2 )
     => ( ~ ( finite772653738at_nat @ S2 )
       => ~ ( finite772653738at_nat @ T2 ) ) ) ).

% infinite_super
thf(fact_233_rev__finite__subset,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( finite_finite_nat @ A2 ) ) ) ).

% rev_finite_subset
thf(fact_234_rev__finite__subset,axiom,
    ! [B2: set_Pr1986765409at_nat,A2: set_Pr1986765409at_nat] :
      ( ( finite772653738at_nat @ B2 )
     => ( ( ord_le841296385at_nat @ A2 @ B2 )
       => ( finite772653738at_nat @ A2 ) ) ) ).

% rev_finite_subset
thf(fact_235_card__subset__eq,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( ( ( finite_card_nat @ A2 )
            = ( finite_card_nat @ B2 ) )
         => ( A2 = B2 ) ) ) ) ).

% card_subset_eq
thf(fact_236_card__subset__eq,axiom,
    ! [B2: set_Pr1986765409at_nat,A2: set_Pr1986765409at_nat] :
      ( ( finite772653738at_nat @ B2 )
     => ( ( ord_le841296385at_nat @ A2 @ B2 )
       => ( ( ( finite447719721at_nat @ A2 )
            = ( finite447719721at_nat @ B2 ) )
         => ( A2 = B2 ) ) ) ) ).

% card_subset_eq
thf(fact_237_infinite__arbitrarily__large,axiom,
    ! [A2: set_nat,N: nat] :
      ( ~ ( finite_finite_nat @ A2 )
     => ? [B3: set_nat] :
          ( ( finite_finite_nat @ B3 )
          & ( ( finite_card_nat @ B3 )
            = N )
          & ( ord_less_eq_set_nat @ B3 @ A2 ) ) ) ).

% infinite_arbitrarily_large
thf(fact_238_infinite__arbitrarily__large,axiom,
    ! [A2: set_Pr1986765409at_nat,N: nat] :
      ( ~ ( finite772653738at_nat @ A2 )
     => ? [B3: set_Pr1986765409at_nat] :
          ( ( finite772653738at_nat @ B3 )
          & ( ( finite447719721at_nat @ B3 )
            = N )
          & ( ord_le841296385at_nat @ B3 @ A2 ) ) ) ).

% infinite_arbitrarily_large
thf(fact_239_Graph_OisSPath__pathLE,axiom,
    ! [C: product_prod_nat_nat > a,S: nat,P5: list_P559422087at_nat,T: nat] :
      ( ( isPath_a @ C @ S @ P5 @ T )
     => ? [P: list_P559422087at_nat] : ( isSimplePath_a @ C @ S @ P @ T ) ) ).

% Graph.isSPath_pathLE
thf(fact_240_Graph_OisSPath__pathLE,axiom,
    ! [C: product_prod_nat_nat > b,S: nat,P5: list_P559422087at_nat,T: nat] :
      ( ( isPath_b @ C @ S @ P5 @ T )
     => ? [P: list_P559422087at_nat] : ( isSimplePath_b @ C @ S @ P @ T ) ) ).

% Graph.isSPath_pathLE
thf(fact_241_Graph_OshortestPath__is__simple,axiom,
    ! [C: product_prod_nat_nat > a,S: nat,P5: list_P559422087at_nat,T: nat] :
      ( ( isShortestPath_a @ C @ S @ P5 @ T )
     => ( isSimplePath_a @ C @ S @ P5 @ T ) ) ).

% Graph.shortestPath_is_simple
thf(fact_242_Graph_OshortestPath__is__simple,axiom,
    ! [C: product_prod_nat_nat > b,S: nat,P5: list_P559422087at_nat,T: nat] :
      ( ( isShortestPath_b @ C @ S @ P5 @ T )
     => ( isSimplePath_b @ C @ S @ P5 @ T ) ) ).

% Graph.shortestPath_is_simple
thf(fact_243_finite__maxlen,axiom,
    ! [M4: set_li664300135at_nat] :
      ( ( finite1299096496at_nat @ M4 )
     => ? [N3: nat] :
        ! [X4: list_P559422087at_nat] :
          ( ( member1608759472at_nat @ X4 @ M4 )
         => ( ord_less_nat @ ( size_s1990949619at_nat @ X4 ) @ N3 ) ) ) ).

% finite_maxlen
thf(fact_244_card__psubset,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( ( ord_less_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) )
         => ( ord_less_set_nat @ A2 @ B2 ) ) ) ) ).

% card_psubset
thf(fact_245_card__psubset,axiom,
    ! [B2: set_Pr1986765409at_nat,A2: set_Pr1986765409at_nat] :
      ( ( finite772653738at_nat @ B2 )
     => ( ( ord_le841296385at_nat @ A2 @ B2 )
       => ( ( ord_less_nat @ ( finite447719721at_nat @ A2 ) @ ( finite447719721at_nat @ B2 ) )
         => ( ord_le116442893at_nat @ A2 @ B2 ) ) ) ) ).

% card_psubset
thf(fact_246_card__mono,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( ord_less_eq_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) ) ) ) ).

% card_mono
thf(fact_247_card__mono,axiom,
    ! [B2: set_Pr1986765409at_nat,A2: set_Pr1986765409at_nat] :
      ( ( finite772653738at_nat @ B2 )
     => ( ( ord_le841296385at_nat @ A2 @ B2 )
       => ( ord_less_eq_nat @ ( finite447719721at_nat @ A2 ) @ ( finite447719721at_nat @ B2 ) ) ) ) ).

% card_mono
thf(fact_248_card__seteq,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_eq_set_nat @ A2 @ B2 )
       => ( ( ord_less_eq_nat @ ( finite_card_nat @ B2 ) @ ( finite_card_nat @ A2 ) )
         => ( A2 = B2 ) ) ) ) ).

% card_seteq
thf(fact_249_card__seteq,axiom,
    ! [B2: set_Pr1986765409at_nat,A2: set_Pr1986765409at_nat] :
      ( ( finite772653738at_nat @ B2 )
     => ( ( ord_le841296385at_nat @ A2 @ B2 )
       => ( ( ord_less_eq_nat @ ( finite447719721at_nat @ B2 ) @ ( finite447719721at_nat @ A2 ) )
         => ( A2 = B2 ) ) ) ) ).

% card_seteq
thf(fact_250_finite__if__finite__subsets__card__bdd,axiom,
    ! [F2: set_nat,C3: nat] :
      ( ! [G: set_nat] :
          ( ( ord_less_eq_set_nat @ G @ F2 )
         => ( ( finite_finite_nat @ G )
           => ( ord_less_eq_nat @ ( finite_card_nat @ G ) @ C3 ) ) )
     => ( ( finite_finite_nat @ F2 )
        & ( ord_less_eq_nat @ ( finite_card_nat @ F2 ) @ C3 ) ) ) ).

% finite_if_finite_subsets_card_bdd
thf(fact_251_finite__if__finite__subsets__card__bdd,axiom,
    ! [F2: set_Pr1986765409at_nat,C3: nat] :
      ( ! [G: set_Pr1986765409at_nat] :
          ( ( ord_le841296385at_nat @ G @ F2 )
         => ( ( finite772653738at_nat @ G )
           => ( ord_less_eq_nat @ ( finite447719721at_nat @ G ) @ C3 ) ) )
     => ( ( finite772653738at_nat @ F2 )
        & ( ord_less_eq_nat @ ( finite447719721at_nat @ F2 ) @ C3 ) ) ) ).

% finite_if_finite_subsets_card_bdd
thf(fact_252_Finite__Graph__def,axiom,
    ( finite_Graph_b
    = ( ^ [C2: product_prod_nat_nat > b] : ( finite_finite_nat @ ( v_b @ C2 ) ) ) ) ).

% Finite_Graph_def
thf(fact_253_Finite__Graph__def,axiom,
    ( finite_Graph_a
    = ( ^ [C2: product_prod_nat_nat > a] : ( finite_finite_nat @ ( v_a @ C2 ) ) ) ) ).

% Finite_Graph_def
thf(fact_254_Finite__Graph_Ointro,axiom,
    ! [C: product_prod_nat_nat > b] :
      ( ( finite_finite_nat @ ( v_b @ C ) )
     => ( finite_Graph_b @ C ) ) ).

% Finite_Graph.intro
thf(fact_255_Finite__Graph_Ointro,axiom,
    ! [C: product_prod_nat_nat > a] :
      ( ( finite_finite_nat @ ( v_a @ C ) )
     => ( finite_Graph_a @ C ) ) ).

% Finite_Graph.intro
thf(fact_256_Finite__Graph_Ofinite__V,axiom,
    ! [C: product_prod_nat_nat > b] :
      ( ( finite_Graph_b @ C )
     => ( finite_finite_nat @ ( v_b @ C ) ) ) ).

% Finite_Graph.finite_V
thf(fact_257_Finite__Graph_Ofinite__V,axiom,
    ! [C: product_prod_nat_nat > a] :
      ( ( finite_Graph_a @ C )
     => ( finite_finite_nat @ ( v_a @ C ) ) ) ).

% Finite_Graph.finite_V
thf(fact_258_finite__psubset__induct,axiom,
    ! [A2: set_Pr1986765409at_nat,P2: set_Pr1986765409at_nat > $o] :
      ( ( finite772653738at_nat @ A2 )
     => ( ! [A3: set_Pr1986765409at_nat] :
            ( ( finite772653738at_nat @ A3 )
           => ( ! [B4: set_Pr1986765409at_nat] :
                  ( ( ord_le116442893at_nat @ B4 @ A3 )
                 => ( P2 @ B4 ) )
             => ( P2 @ A3 ) ) )
       => ( P2 @ A2 ) ) ) ).

% finite_psubset_induct
thf(fact_259_finite__psubset__induct,axiom,
    ! [A2: set_nat,P2: set_nat > $o] :
      ( ( finite_finite_nat @ A2 )
     => ( ! [A3: set_nat] :
            ( ( finite_finite_nat @ A3 )
           => ( ! [B4: set_nat] :
                  ( ( ord_less_set_nat @ B4 @ A3 )
                 => ( P2 @ B4 ) )
             => ( P2 @ A3 ) ) )
       => ( P2 @ A2 ) ) ) ).

% finite_psubset_induct
thf(fact_260_Graph_OisShortestPath__alt,axiom,
    ( isShortestPath_a
    = ( ^ [C2: product_prod_nat_nat > a,U2: nat,P3: list_P559422087at_nat,V4: nat] :
          ( ( isSimplePath_a @ C2 @ U2 @ P3 @ V4 )
          & ( ( size_s1990949619at_nat @ P3 )
            = ( min_dist_a @ C2 @ U2 @ V4 ) ) ) ) ) ).

% Graph.isShortestPath_alt
thf(fact_261_Graph_OisShortestPath__alt,axiom,
    ( isShortestPath_b
    = ( ^ [C2: product_prod_nat_nat > b,U2: nat,P3: list_P559422087at_nat,V4: nat] :
          ( ( isSimplePath_b @ C2 @ U2 @ P3 @ V4 )
          & ( ( size_s1990949619at_nat @ P3 )
            = ( min_dist_b @ C2 @ U2 @ V4 ) ) ) ) ) ).

% Graph.isShortestPath_alt
thf(fact_262_ek__analysis_Ocard__spEdges__le,axiom,
    ! [C: product_prod_nat_nat > a,S: nat,T: nat] :
      ( ( edmond1517640972ysis_a @ C )
     => ( ord_less_eq_nat @ ( finite447719721at_nat @ ( edmond475474835dges_a @ C @ S @ T ) ) @ ( finite447719721at_nat @ ( edmond771116670s_uE_a @ C ) ) ) ) ).

% ek_analysis.card_spEdges_le
thf(fact_263_ek__analysis_Ocard__spEdges__le,axiom,
    ! [C: product_prod_nat_nat > b,S: nat,T: nat] :
      ( ( edmond1517640973ysis_b @ C )
     => ( ord_less_eq_nat @ ( finite447719721at_nat @ ( edmond475474836dges_b @ C @ S @ T ) ) @ ( finite447719721at_nat @ ( edmond771116671s_uE_b @ C ) ) ) ) ).

% ek_analysis.card_spEdges_le
thf(fact_264_finite__has__minimal2,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ A @ A2 )
       => ? [X2: nat] :
            ( ( member_nat @ X2 @ A2 )
            & ( ord_less_eq_nat @ X2 @ A )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ Xa @ X2 )
                 => ( X2 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_265_finite__has__minimal2,axiom,
    ! [A2: set_set_nat,A: set_nat] :
      ( ( finite2012248349et_nat @ A2 )
     => ( ( member_set_nat @ A @ A2 )
       => ? [X2: set_nat] :
            ( ( member_set_nat @ X2 @ A2 )
            & ( ord_less_eq_set_nat @ X2 @ A )
            & ! [Xa: set_nat] :
                ( ( member_set_nat @ Xa @ A2 )
               => ( ( ord_less_eq_set_nat @ Xa @ X2 )
                 => ( X2 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_266_finite__has__minimal2,axiom,
    ! [A2: set_se1612935105at_nat,A: set_Pr1986765409at_nat] :
      ( ( finite1457549322at_nat @ A2 )
     => ( ( member298845450at_nat @ A @ A2 )
       => ? [X2: set_Pr1986765409at_nat] :
            ( ( member298845450at_nat @ X2 @ A2 )
            & ( ord_le841296385at_nat @ X2 @ A )
            & ! [Xa: set_Pr1986765409at_nat] :
                ( ( member298845450at_nat @ Xa @ A2 )
               => ( ( ord_le841296385at_nat @ Xa @ X2 )
                 => ( X2 = Xa ) ) ) ) ) ) ).

% finite_has_minimal2
thf(fact_267_finite__has__maximal2,axiom,
    ! [A2: set_nat,A: nat] :
      ( ( finite_finite_nat @ A2 )
     => ( ( member_nat @ A @ A2 )
       => ? [X2: nat] :
            ( ( member_nat @ X2 @ A2 )
            & ( ord_less_eq_nat @ A @ X2 )
            & ! [Xa: nat] :
                ( ( member_nat @ Xa @ A2 )
               => ( ( ord_less_eq_nat @ X2 @ Xa )
                 => ( X2 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_268_finite__has__maximal2,axiom,
    ! [A2: set_set_nat,A: set_nat] :
      ( ( finite2012248349et_nat @ A2 )
     => ( ( member_set_nat @ A @ A2 )
       => ? [X2: set_nat] :
            ( ( member_set_nat @ X2 @ A2 )
            & ( ord_less_eq_set_nat @ A @ X2 )
            & ! [Xa: set_nat] :
                ( ( member_set_nat @ Xa @ A2 )
               => ( ( ord_less_eq_set_nat @ X2 @ Xa )
                 => ( X2 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_269_finite__has__maximal2,axiom,
    ! [A2: set_se1612935105at_nat,A: set_Pr1986765409at_nat] :
      ( ( finite1457549322at_nat @ A2 )
     => ( ( member298845450at_nat @ A @ A2 )
       => ? [X2: set_Pr1986765409at_nat] :
            ( ( member298845450at_nat @ X2 @ A2 )
            & ( ord_le841296385at_nat @ A @ X2 )
            & ! [Xa: set_Pr1986765409at_nat] :
                ( ( member298845450at_nat @ Xa @ A2 )
               => ( ( ord_le841296385at_nat @ X2 @ Xa )
                 => ( X2 = Xa ) ) ) ) ) ) ).

% finite_has_maximal2
thf(fact_270_Finite__Graph_OsimplePath__length__less__V,axiom,
    ! [C: product_prod_nat_nat > a,U: nat,P5: list_P559422087at_nat,V: nat] :
      ( ( finite_Graph_a @ C )
     => ( ( member_nat @ U @ ( v_a @ C ) )
       => ( ( isSimplePath_a @ C @ U @ P5 @ V )
         => ( ord_less_nat @ ( size_s1990949619at_nat @ P5 ) @ ( finite_card_nat @ ( v_a @ C ) ) ) ) ) ) ).

% Finite_Graph.simplePath_length_less_V
thf(fact_271_Finite__Graph_OsimplePath__length__less__V,axiom,
    ! [C: product_prod_nat_nat > b,U: nat,P5: list_P559422087at_nat,V: nat] :
      ( ( finite_Graph_b @ C )
     => ( ( member_nat @ U @ ( v_b @ C ) )
       => ( ( isSimplePath_b @ C @ U @ P5 @ V )
         => ( ord_less_nat @ ( size_s1990949619at_nat @ P5 ) @ ( finite_card_nat @ ( v_b @ C ) ) ) ) ) ) ).

% Finite_Graph.simplePath_length_less_V
thf(fact_272_psubset__card__mono,axiom,
    ! [B2: set_Pr1986765409at_nat,A2: set_Pr1986765409at_nat] :
      ( ( finite772653738at_nat @ B2 )
     => ( ( ord_le116442893at_nat @ A2 @ B2 )
       => ( ord_less_nat @ ( finite447719721at_nat @ A2 ) @ ( finite447719721at_nat @ B2 ) ) ) ) ).

% psubset_card_mono
thf(fact_273_psubset__card__mono,axiom,
    ! [B2: set_nat,A2: set_nat] :
      ( ( finite_finite_nat @ B2 )
     => ( ( ord_less_set_nat @ A2 @ B2 )
       => ( ord_less_nat @ ( finite_card_nat @ A2 ) @ ( finite_card_nat @ B2 ) ) ) ) ).

% psubset_card_mono
thf(fact_274_reachable__ss__V,axiom,
    ! [S: nat] :
      ( ( member_nat @ S @ ( v_a @ c ) )
     => ( ord_less_eq_set_nat @ ( reachableNodes_a @ c @ S ) @ ( v_a @ c ) ) ) ).

% reachable_ss_V
thf(fact_275_g_H_Oreachable__ss__V,axiom,
    ! [S: nat] :
      ( ( member_nat @ S @ ( v_b @ c2 ) )
     => ( ord_less_eq_set_nat @ ( reachableNodes_b @ c2 @ S ) @ ( v_b @ c2 ) ) ) ).

% g'.reachable_ss_V
thf(fact_276_spEdges__ss__E,axiom,
    ord_le841296385at_nat @ ( edmond475474835dges_a @ c @ s @ t ) @ ( e_a @ c ) ).

% spEdges_ss_E
thf(fact_277_E__ss__uE,axiom,
    ord_le841296385at_nat @ ( e_a @ c ) @ ( edmond771116670s_uE_a @ c ) ).

% E_ss_uE
thf(fact_278_Finite__Graph__EI,axiom,
    ( ( finite772653738at_nat @ ( e_a @ c ) )
   => ( finite_Graph_a @ c ) ) ).

% Finite_Graph_EI
thf(fact_279_Efin__imp__Vfin,axiom,
    ( ( finite772653738at_nat @ ( e_a @ c ) )
   => ( finite_finite_nat @ ( v_a @ c ) ) ) ).

% Efin_imp_Vfin
thf(fact_280_finite__E,axiom,
    finite772653738at_nat @ ( e_a @ c ) ).

% finite_E
thf(fact_281_g_H_Oadjacent__nodes__finite,axiom,
    ! [U: nat] : ( finite_finite_nat @ ( adjacent_nodes_b @ c2 @ U ) ) ).

% g'.adjacent_nodes_finite
thf(fact_282_adjacent__nodes__finite,axiom,
    ! [U: nat] : ( finite_finite_nat @ ( adjacent_nodes_a @ c @ U ) ) ).

% adjacent_nodes_finite
thf(fact_283_Vfin__imp__Efin,axiom,
    ( ( finite_finite_nat @ ( v_a @ c ) )
   => ( finite772653738at_nat @ ( e_a @ c ) ) ) ).

% Vfin_imp_Efin
thf(fact_284_Graph_OreachableNodes_Ocong,axiom,
    reachableNodes_a = reachableNodes_a ).

% Graph.reachableNodes.cong
thf(fact_285_Graph_OreachableNodes_Ocong,axiom,
    reachableNodes_b = reachableNodes_b ).

% Graph.reachableNodes.cong
thf(fact_286_Graph_Oadjacent__nodes_Ocong,axiom,
    adjacent_nodes_b = adjacent_nodes_b ).

% Graph.adjacent_nodes.cong
thf(fact_287_Graph_Oadjacent__nodes_Ocong,axiom,
    adjacent_nodes_a = adjacent_nodes_a ).

% Graph.adjacent_nodes.cong
thf(fact_288_Graph_OE_Ocong,axiom,
    e_a = e_a ).

% Graph.E.cong
thf(fact_289_Graph_OE_Ocong,axiom,
    e_b = e_b ).

% Graph.E.cong
thf(fact_290_Graph_Oreachable__ss__V,axiom,
    ! [S: nat,C: product_prod_nat_nat > a] :
      ( ( member_nat @ S @ ( v_a @ C ) )
     => ( ord_less_eq_set_nat @ ( reachableNodes_a @ C @ S ) @ ( v_a @ C ) ) ) ).

% Graph.reachable_ss_V
thf(fact_291_Graph_Oreachable__ss__V,axiom,
    ! [S: nat,C: product_prod_nat_nat > b] :
      ( ( member_nat @ S @ ( v_b @ C ) )
     => ( ord_less_eq_set_nat @ ( reachableNodes_b @ C @ S ) @ ( v_b @ C ) ) ) ).

% Graph.reachable_ss_V
thf(fact_292_Graph_OEfin__imp__Vfin,axiom,
    ! [C: product_prod_nat_nat > a] :
      ( ( finite772653738at_nat @ ( e_a @ C ) )
     => ( finite_finite_nat @ ( v_a @ C ) ) ) ).

% Graph.Efin_imp_Vfin
thf(fact_293_Graph_OEfin__imp__Vfin,axiom,
    ! [C: product_prod_nat_nat > b] :
      ( ( finite772653738at_nat @ ( e_b @ C ) )
     => ( finite_finite_nat @ ( v_b @ C ) ) ) ).

% Graph.Efin_imp_Vfin
thf(fact_294_Graph_OVfin__imp__Efin,axiom,
    ! [C: product_prod_nat_nat > a] :
      ( ( finite_finite_nat @ ( v_a @ C ) )
     => ( finite772653738at_nat @ ( e_a @ C ) ) ) ).

% Graph.Vfin_imp_Efin
thf(fact_295_Graph_OVfin__imp__Efin,axiom,
    ! [C: product_prod_nat_nat > b] :
      ( ( finite_finite_nat @ ( v_b @ C ) )
     => ( finite772653738at_nat @ ( e_b @ C ) ) ) ).

% Graph.Vfin_imp_Efin
thf(fact_296_Graph_OFinite__Graph__EI,axiom,
    ! [C: product_prod_nat_nat > b] :
      ( ( finite772653738at_nat @ ( e_b @ C ) )
     => ( finite_Graph_b @ C ) ) ).

% Graph.Finite_Graph_EI
thf(fact_297_Graph_OFinite__Graph__EI,axiom,
    ! [C: product_prod_nat_nat > a] :
      ( ( finite772653738at_nat @ ( e_a @ C ) )
     => ( finite_Graph_a @ C ) ) ).

% Graph.Finite_Graph_EI
thf(fact_298_Finite__Graph_Ofinite__E,axiom,
    ! [C: product_prod_nat_nat > b] :
      ( ( finite_Graph_b @ C )
     => ( finite772653738at_nat @ ( e_b @ C ) ) ) ).

% Finite_Graph.finite_E
thf(fact_299_Finite__Graph_Ofinite__E,axiom,
    ! [C: product_prod_nat_nat > a] :
      ( ( finite_Graph_a @ C )
     => ( finite772653738at_nat @ ( e_a @ C ) ) ) ).

% Finite_Graph.finite_E
thf(fact_300_ek__analysis_OE__ss__uE,axiom,
    ! [C: product_prod_nat_nat > b] :
      ( ( edmond1517640973ysis_b @ C )
     => ( ord_le841296385at_nat @ ( e_b @ C ) @ ( edmond771116671s_uE_b @ C ) ) ) ).

% ek_analysis.E_ss_uE
thf(fact_301_ek__analysis_OE__ss__uE,axiom,
    ! [C: product_prod_nat_nat > a] :
      ( ( edmond1517640972ysis_a @ C )
     => ( ord_le841296385at_nat @ ( e_a @ C ) @ ( edmond771116670s_uE_a @ C ) ) ) ).

% ek_analysis.E_ss_uE
thf(fact_302_ek__analysis_OspEdges__ss__E,axiom,
    ! [C: product_prod_nat_nat > a,S: nat,T: nat] :
      ( ( edmond1517640972ysis_a @ C )
     => ( ord_le841296385at_nat @ ( edmond475474835dges_a @ C @ S @ T ) @ ( e_a @ C ) ) ) ).

% ek_analysis.spEdges_ss_E
thf(fact_303_ek__analysis_OspEdges__ss__E,axiom,
    ! [C: product_prod_nat_nat > b,S: nat,T: nat] :
      ( ( edmond1517640973ysis_b @ C )
     => ( ord_le841296385at_nat @ ( edmond475474836dges_b @ C @ S @ T ) @ ( e_b @ C ) ) ) ).

% ek_analysis.spEdges_ss_E
thf(fact_304_Graph_Oadjacent__nodes__ss__V,axiom,
    ! [C: product_prod_nat_nat > b,U: nat] : ( ord_less_eq_set_nat @ ( adjacent_nodes_b @ C @ U ) @ ( v_b @ C ) ) ).

% Graph.adjacent_nodes_ss_V
thf(fact_305_Graph_Oadjacent__nodes__ss__V,axiom,
    ! [C: product_prod_nat_nat > a,U: nat] : ( ord_less_eq_set_nat @ ( adjacent_nodes_a @ C @ U ) @ ( v_a @ C ) ) ).

% Graph.adjacent_nodes_ss_V
thf(fact_306_Finite__Graph_Oadjacent__nodes__finite,axiom,
    ! [C: product_prod_nat_nat > b,U: nat] :
      ( ( finite_Graph_b @ C )
     => ( finite_finite_nat @ ( adjacent_nodes_b @ C @ U ) ) ) ).

% Finite_Graph.adjacent_nodes_finite
thf(fact_307_Finite__Graph_Oadjacent__nodes__finite,axiom,
    ! [C: product_prod_nat_nat > a,U: nat] :
      ( ( finite_Graph_a @ C )
     => ( finite_finite_nat @ ( adjacent_nodes_a @ C @ U ) ) ) ).

% Finite_Graph.adjacent_nodes_finite
thf(fact_308_incoming_H__edges,axiom,
    ! [U3: set_nat] : ( ord_le841296385at_nat @ ( incoming_a @ c @ U3 ) @ ( e_a @ c ) ) ).

% incoming'_edges
thf(fact_309_outgoing_H__edges,axiom,
    ! [U3: set_nat] : ( ord_le841296385at_nat @ ( outgoing_a @ c @ U3 ) @ ( e_a @ c ) ) ).

% outgoing'_edges
thf(fact_310_g_H_OE__ss__uE,axiom,
    ord_le841296385at_nat @ ( e_b @ c2 ) @ ( edmond771116671s_uE_b @ c2 ) ).

% g'.E_ss_uE
thf(fact_311_g_H_OFinite__Graph__EI,axiom,
    ( ( finite772653738at_nat @ ( e_b @ c2 ) )
   => ( finite_Graph_b @ c2 ) ) ).

% g'.Finite_Graph_EI
thf(fact_312_g_H_OEfin__imp__Vfin,axiom,
    ( ( finite772653738at_nat @ ( e_b @ c2 ) )
   => ( finite_finite_nat @ ( v_b @ c2 ) ) ) ).

% g'.Efin_imp_Vfin
thf(fact_313_g_H_OspEdges__ss__E,axiom,
    ord_le841296385at_nat @ ( edmond475474836dges_b @ c2 @ s @ t ) @ ( e_b @ c2 ) ).

% g'.spEdges_ss_E
thf(fact_314_g_H_Ofinite__E,axiom,
    finite772653738at_nat @ ( e_b @ c2 ) ).

% g'.finite_E
thf(fact_315_g_H_OVfin__imp__Efin,axiom,
    ( ( finite_finite_nat @ ( v_b @ c2 ) )
   => ( finite772653738at_nat @ ( e_b @ c2 ) ) ) ).

% g'.Vfin_imp_Efin
thf(fact_316_finite__outgoing_H,axiom,
    ! [U3: set_nat] :
      ( ( finite_finite_nat @ ( v_a @ c ) )
     => ( finite772653738at_nat @ ( outgoing_a @ c @ U3 ) ) ) ).

% finite_outgoing'
thf(fact_317_finite__incoming_H,axiom,
    ! [U3: set_nat] :
      ( ( finite_finite_nat @ ( v_a @ c ) )
     => ( finite772653738at_nat @ ( incoming_a @ c @ U3 ) ) ) ).

% finite_incoming'
thf(fact_318_Graph_Oincoming_H_Ocong,axiom,
    incoming_a = incoming_a ).

% Graph.incoming'.cong
thf(fact_319_Graph_Oincoming_H_Ocong,axiom,
    incoming_b = incoming_b ).

% Graph.incoming'.cong
thf(fact_320_Graph_Ooutgoing_H_Ocong,axiom,
    outgoing_a = outgoing_a ).

% Graph.outgoing'.cong
thf(fact_321_Graph_Ooutgoing_H_Ocong,axiom,
    outgoing_b = outgoing_b ).

% Graph.outgoing'.cong
thf(fact_322_Graph_Ooutgoing_H__edges,axiom,
    ! [C: product_prod_nat_nat > a,U3: set_nat] : ( ord_le841296385at_nat @ ( outgoing_a @ C @ U3 ) @ ( e_a @ C ) ) ).

% Graph.outgoing'_edges
thf(fact_323_Graph_Ooutgoing_H__edges,axiom,
    ! [C: product_prod_nat_nat > b,U3: set_nat] : ( ord_le841296385at_nat @ ( outgoing_b @ C @ U3 ) @ ( e_b @ C ) ) ).

% Graph.outgoing'_edges
thf(fact_324_Graph_Oincoming_H__edges,axiom,
    ! [C: product_prod_nat_nat > a,U3: set_nat] : ( ord_le841296385at_nat @ ( incoming_a @ C @ U3 ) @ ( e_a @ C ) ) ).

% Graph.incoming'_edges
thf(fact_325_Graph_Oincoming_H__edges,axiom,
    ! [C: product_prod_nat_nat > b,U3: set_nat] : ( ord_le841296385at_nat @ ( incoming_b @ C @ U3 ) @ ( e_b @ C ) ) ).

% Graph.incoming'_edges
thf(fact_326_Graph_Ofinite__outgoing_H,axiom,
    ! [C: product_prod_nat_nat > a,U3: set_nat] :
      ( ( finite_finite_nat @ ( v_a @ C ) )
     => ( finite772653738at_nat @ ( outgoing_a @ C @ U3 ) ) ) ).

% Graph.finite_outgoing'
thf(fact_327_Graph_Ofinite__outgoing_H,axiom,
    ! [C: product_prod_nat_nat > b,U3: set_nat] :
      ( ( finite_finite_nat @ ( v_b @ C ) )
     => ( finite772653738at_nat @ ( outgoing_b @ C @ U3 ) ) ) ).

% Graph.finite_outgoing'
thf(fact_328_Graph_Ofinite__incoming_H,axiom,
    ! [C: product_prod_nat_nat > a,U3: set_nat] :
      ( ( finite_finite_nat @ ( v_a @ C ) )
     => ( finite772653738at_nat @ ( incoming_a @ C @ U3 ) ) ) ).

% Graph.finite_incoming'
thf(fact_329_Graph_Ofinite__incoming_H,axiom,
    ! [C: product_prod_nat_nat > b,U3: set_nat] :
      ( ( finite_finite_nat @ ( v_b @ C ) )
     => ( finite772653738at_nat @ ( incoming_b @ C @ U3 ) ) ) ).

% Graph.finite_incoming'
thf(fact_330_g_H_Oincoming_H__edges,axiom,
    ! [U3: set_nat] : ( ord_le841296385at_nat @ ( incoming_b @ c2 @ U3 ) @ ( e_b @ c2 ) ) ).

% g'.incoming'_edges
thf(fact_331_g_H_Ooutgoing_H__edges,axiom,
    ! [U3: set_nat] : ( ord_le841296385at_nat @ ( outgoing_b @ c2 @ U3 ) @ ( e_b @ c2 ) ) ).

% g'.outgoing'_edges
thf(fact_332_g_H_Ofinite__outgoing_H,axiom,
    ! [U3: set_nat] :
      ( ( finite_finite_nat @ ( v_b @ c2 ) )
     => ( finite772653738at_nat @ ( outgoing_b @ c2 @ U3 ) ) ) ).

% g'.finite_outgoing'
thf(fact_333_g_H_Ofinite__incoming_H,axiom,
    ! [U3: set_nat] :
      ( ( finite_finite_nat @ ( v_b @ c2 ) )
     => ( finite772653738at_nat @ ( incoming_b @ c2 @ U3 ) ) ) ).

% g'.finite_incoming'
thf(fact_334__092_060open_062edges_A_092_060subseteq_062_AE_092_060close_062,axiom,
    ord_le841296385at_nat @ edges @ ( e_a @ c ) ).

% \<open>edges \<subseteq> E\<close>
thf(fact_335_psubsetI,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( A2 != B2 )
       => ( ord_less_set_nat @ A2 @ B2 ) ) ) ).

% psubsetI
thf(fact_336_psubsetI,axiom,
    ! [A2: set_Pr1986765409at_nat,B2: set_Pr1986765409at_nat] :
      ( ( ord_le841296385at_nat @ A2 @ B2 )
     => ( ( A2 != B2 )
       => ( ord_le116442893at_nat @ A2 @ B2 ) ) ) ).

% psubsetI
thf(fact_337_subset__antisym,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% subset_antisym
thf(fact_338_subset__antisym,axiom,
    ! [A2: set_Pr1986765409at_nat,B2: set_Pr1986765409at_nat] :
      ( ( ord_le841296385at_nat @ A2 @ B2 )
     => ( ( ord_le841296385at_nat @ B2 @ A2 )
       => ( A2 = B2 ) ) ) ).

% subset_antisym
thf(fact_339_subsetI,axiom,
    ! [A2: set_nat,B2: set_nat] :
      ( ! [X2: nat] :
          ( ( member_nat @ X2 @ A2 )
         => ( member_nat @ X2 @ B2 ) )
     => ( ord_less_eq_set_nat @ A2 @ B2 ) ) ).

% subsetI
thf(fact_340_subsetI,axiom,
    ! [A2: set_Pr1986765409at_nat,B2: set_Pr1986765409at_nat] :
      ( ! [X2: product_prod_nat_nat] :
          ( ( member701585322at_nat @ X2 @ A2 )
         => ( member701585322at_nat @ X2 @ B2 ) )
     => ( ord_le841296385at_nat @ A2 @ B2 ) ) ).

% subsetI
thf(fact_341_SP__EDGES,axiom,
    ord_le841296385at_nat @ edges @ ( set_Pr2131844118at_nat @ p ) ).

% SP_EDGES
thf(fact_342_Collect__mono__iff,axiom,
    ! [P2: nat > $o,Q: nat > $o] :
      ( ( ord_less_eq_set_nat @ ( collect_nat @ P2 ) @ ( collect_nat @ Q ) )
      = ( ! [X: nat] :
            ( ( P2 @ X )
           => ( Q @ X ) ) ) ) ).

% Collect_mono_iff
thf(fact_343_Collect__mono__iff,axiom,
    ! [P2: product_prod_nat_nat > $o,Q: product_prod_nat_nat > $o] :
      ( ( ord_le841296385at_nat @ ( collec7649004at_nat @ P2 ) @ ( collec7649004at_nat @ Q ) )
      = ( ! [X: product_prod_nat_nat] :
            ( ( P2 @ X )
           => ( Q @ X ) ) ) ) ).

% Collect_mono_iff
thf(fact_344_set__eq__subset,axiom,
    ( ( ^ [Y4: set_nat,Z: set_nat] : Y4 = Z )
    = ( ^ [A4: set_nat,B5: set_nat] :
          ( ( ord_less_eq_set_nat @ A4 @ B5 )
          & ( ord_less_eq_set_nat @ B5 @ A4 ) ) ) ) ).

% set_eq_subset
thf(fact_345_set__eq__subset,axiom,
    ( ( ^ [Y4: set_Pr1986765409at_nat,Z: set_Pr1986765409at_nat] : Y4 = Z )
    = ( ^ [A4: set_Pr1986765409at_nat,B5: set_Pr1986765409at_nat] :
          ( ( ord_le841296385at_nat @ A4 @ B5 )
          & ( ord_le841296385at_nat @ B5 @ A4 ) ) ) ) ).

% set_eq_subset
thf(fact_346_subset__trans,axiom,
    ! [A2: set_nat,B2: set_nat,C3: set_nat] :
      ( ( ord_less_eq_set_nat @ A2 @ B2 )
     => ( ( ord_less_eq_set_nat @ B2 @ C3 )
       => ( ord_less_eq_set_nat @ A2 @ C3 ) ) ) ).

% subset_trans
thf(fact_347_subset__trans,axiom,
    ! [A2: set_Pr1986765409at_nat,B2: set_Pr1986765409at_nat,C3: set_Pr1986765409at_nat] :
      ( ( ord_le841296385at_nat @ A2 @ B2 )
     => ( ( ord_le841296385at_nat @ B2 @ C3 )
       => ( ord_le841296385at_nat @ A2 @ C3 ) ) ) ).

% subset_trans

% Conjectures (1)
thf(conj_0,conjecture,
    $false ).

%------------------------------------------------------------------------------